Tropospheric ozone pollution: Implication for food security and crop nutrition in South Asia
Main Article Content
Keywords
air pollution, ethylene diurea, foliar injury, food security, nutritional quality
Abstract
The study was conducted on ambient ozone (O3), the most phyto-toxic air pollutant, and its effects on the growth and quality of okra (Abelmoschus esculentus) and peas (Pisum sativaum) grown in Northern Pakistan during the summer and winter of 2018. Okra was subjected to ambient O3 levels ranging from 43 to 63 ppb during the summer, with a mean O3 concentration of 55 ppb, while peas experienced lower winter concentrations of 15–25 ppb, with a mean O3 concentration of 19 ppb. The results indicated significant impacts on the growth and nutritional quality of crops, especially okra. Anti-ozonant ethylene diurea (EDU) was used for soil drenching to protect okra and green peas from O3 damage. Okra showed notable enhancements of 20%, 20%, 29%, and 13% in ash, protein, fiber, and non-fiber carbohydrates (NFE), respectively. Increase in plant height, leaf numbers, pod length, and dry weight was observed in EDU-treated okra plants. Conversely, peas exhibited less variation, although melioration was observed in plant height, pod numbers, length, and weight with EDU treatment. It was concluded that the concentration of ambient O3 in Peshawar is toxic enough to cause significant damage to crop growth and production. The stark difference in O3 impact during different seasons suggests that higher summer concentrations could severely compromise crop quality. This elicits significant concerns regarding food security in South Asia, especially for summer crops that can jeopardize future food security. It is recommended that further research be conducted on the effects of O3 on other regional crops to assess fully its implications for agricultural sustainability in the area.
References
Agrawal, M., Singh, B., Rajput, M., Marshall, F., and Bell, J.J.E.P. 2003. Effect of air pollution on peri-urban agriculture: a case study. Enviro. Pollut. 126(3):323–329. 10.1016/S0269-7491(03)00245-8
Agrawal, P., and Jain, P.C. 2009. Study of native bioinoculants from the mung bean of district Sagar (MP) India. Int. J. Plant Sci. 4:521–523.
Ahmad, M.N., Büker, P., Khalid, S., van den Berg, L., Shah, H.U., Wahid, A., and Ashmore, M.J.E.P. 2013. Effects of ozone on crops in north-west Pakistan. Environ Pollut. 174:244–249. 10.1016/j.envpol.2012.11.029
Ahmad, M.N., van den Berg, L.J.L., Shah, H.U., Masood, T., Büker, P., Emberson, L., and Ashmore, M. 2012. Hydrogen fluoride damage to fruit trees in the vicinity of brick kiln factories in Asia: an unrecognised environmental problem? Environ Pollut. 162(1):319–324. 10.1016/j.envpol.2011.11.017
Ahmad, N. 2010. Air pollution effects to agricultural crops. PhD thesis, University of York, UK. Available at: https://etheses.whiterose.ac.uk/1165/.
Ainsworth, E.A., Serbin, S.P., Skoneczka, J.A., and Townsend, P.A.J.P.R. 2014. Using leaf optical properties to detect ozone effects on foliar biochemistry. Plant Physiol. 119(1):65–76. 10.1007/s11120-013-9837-y
Aziz, T., Qadir, R., Anwar, F., Naz, S., Nazir, N., Nabi, G., Haiying, C. et al. 2024. Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl Biochem Biotechnol. 1–9. 10.1007/s12010-024-04875-w
Bacha, A., Hamza, W., Ali Khan, A., Aziz, A., Wu, T., Al-Asmari, J., Y Sameeh, F. et al. 2024. Scrutinizing the antidiabetic, antidiarrheal, and anti-inflammatory activities of methanolic extract of pomegranate peel via different approaches. Ital. J of Food Sci. 36(1):1–14. 10.15586/ijfs.v36i1.2459
Benkiran, S., Zinedine, A., Aziz, T., Miguel, R.J., Ayam, I.M., Raoui, S.M. et al. 2024. Wound-healing potentiation in mice treated with phenolic extracts of Moringa oleifera leaves planted at different climatic areas. Ital. J of Food Sci. 36(1):28-43. 10.15586/ijfs.v36i1.2454
Burbulis, N., Blinstrubienė, A., Sliesaravičius, A., and Kuprienė, R.J.B. 2007. Some factors affecting callus induction in ovary culture of flax (Linum usitatissimum L.). Biologija. 53(2):21–23.
Chaudhary, A., Aihetasham, A., Younas, S., Basheer, N., Hussain, N., Naz, S., Aziz, T. et al. 2024. Statistical optimization for comparative hydrolysis and fermentation for hemicellulosic ethanolgenesis. Ital. J of Food Sci. 36(2):231–245. 10.15586/ijfs.v36i2.2526
Ejaz, U., Afzal, M., Naveed, M., Amin, Z.S., Atta, A., Aziz, T., Kainat, G. et al. 2024. Pharmacological evaluation and phytochemical profiling of butanol extract of L. edodes with in-silico virtual screening. Sci Rep. 14(1):5751. 10.1038/s41598-024-56421-7
Elampari, K., Chithambarathanu, T., and Sharma, R.K. 2010. Examining the variations of ground level ozone and nitrogen dioxide in a rural area influenced by brick kiln industries. Int J Sci Technol. 3(8):900–903. 10.17485/ijst/2010/v3i8.14
Emberson, L. 2020. Effects of ozone on agriculture, forests and grasslands. Philos Trans Royal Soc A. 378(2183):20190327. 10.1098/rsta.2019.0327
Emberson, L.D., Pleijel, H., Ainsworth, E.A., Van den Berg, M., Ren, W., Osborne, S., Mills, G., Pandey, D., Dentener, F., Büker, P., and Ewert, F. 2018. Ozone effects on crops and consideration in crop models. Eur J Agron. 100:19–34. 10.1016/j.eja.2018.06.002
Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud V. et al. 2022. Ozone pollution threatens the production of major staple crops in East Asia. Nature Food. 3(1):47–56. 10.1038/s43016-021-00422-6
Frei, M., Makkar, H.P., Becker, K., and Wissuwa, M. 2010. Ozone exposure during growth affects the feeding value of rice shoots. Animal Feed Sci Technol. 155(1):74–79. 10.1016/j.anifeedsci.2009.09.013
Getie, M. 2022. Genetic diversity and association of traits in field pea (Pisum sativum L.) accessions in Mecha District, North Western Ethiopia. Doctoral Dissertation, Bahir Dar, University, Ethiopia.
Ghani, F., and Salam, G. 2023. Social survey based planning for improved ambient air quality of grand trunk road Peshawar, Khyber Pakhtunkhwa, Pakistan. Dialogue. 18(4):31–42.
Grulke, N.E., and Heath, R.L. 2020. Ozone effects on plants in natural ecosystems. Plant Biol. 22:12–37. 10.1111/plb.12971
Hassan, M., Zia, A., Nauman Ahmad, M., Baseer Us Salam, M., Siraj, M., Sabir, S., Arif, M. et al. 2024. Valorization of banana waste by optimizing nitrocellulose production, yield, and solubility via nitrating acid mixtures and reaction time. Ital. J of Food Sci. 36(2):224–230. 10.15586/ijfs.v36i2.2559
Hayat, M., Khan, B., Iqbal, J., Nauman Ahmad, M., Khan, A.A., Haq, T.-ul, Aziz, T., and Albekairi, T.H. (2024). Evidence of microplastic contamination in the food chain: an assessment of their presence in the gastrointestinal tract of native fish. Ital. J of Food Sci. 36(3):40–49. 10.15586/ijfs.v36i3.2532
Husen, A. 2022. Plants and their interaction to environmental pollution: Damage detection, adaptation, tolerance, physiological and molecular responses. Elsevier, Cambridge, MA.
Ihsan, M., Khan, A., Nazir, N., Nisar, M., Jan, T., Ullah, S., Aziz, T. et al. 2024. Evaluation of the durum wheat landrace genetic diversity using agro analysis and its benefit for human health. Ital. J of Food Sci. 36(1):15–27. 10.15586/ijfs.v36i1.2466
Khan, M.A., Khan, R., Al-Zghoul, T.M., Khan, A., Hussain, A., Baarimah, A.O., and Arshad, M.A. 2024. Optimizing municipal solid waste management in urban Peshawar: a linear mathematical modeling and GIS approach for efficiency and sustainability. Case Studies Chem Environ Eng. 9:100704. 10.1016/j.cscee.2024.100704
Lurmann, F.W., Roberts, P.T., Main, H., Hering, S.V., Avol, E.L., and Colome, S. 1994. Phase II Report, Appendix A: Exposure Assessment Methodology. Los Angeles, CA: California Air Resources Board, 11.
Mukherjee, A., Yadav, D.S., Agrawal, S.B., and Agrawal, M. 2021. Ozone a persistent challenge to food security in India: current status and policy implications. Curr Opin Environ Sci Health. 19:100220. 10.1016/j.coesh.2020.10.008
Naveed, M., Salah, U.D.M., Aziz, T., Javed, T., Miraj, K.S., Naveed, R. et al. 2024. Comparative analysis among the degradation potential of enzymes obtained from Escherichia coli against the toxicity of sulfur dyes through molecular docking. Z Naturforsch C J Biosci. 79(7–8):221–234. 10.1515/znc-2024-0072
Nowroz, F., Hasanuzzaman, M., Siddika, A., Parvin, K., Caparros, P.G., Nahar, K., and Prasad, P.V. 2024. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. Front Plant Sci. 14:1244515. 10.3389/fpls.2023.1244515
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A. et al. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change (IPCC), 151 p.
Pakistan Bureau of Statistics. 2017. Population consensus district wise results. Available at: https://www.pbs.gov.pk/content/district-wise-results-tables-census-2017.gh [Accessed on 23/11/2022)
Pillai, A.T., Kaur, N., and Morya, S. 2024. Okra (Abelmoschus esculentus). Nutraceuticals from fruit and vegetable waste, pp. 403–423. Springer Nature, Berlin, Germany. 10.1002/9781119803980.ch15
Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., and Agathokleous, E. 2023. Effect of ozone stress on crop productivity: a threat to food security. Environ Res. 236(2):116816. 10.1016/j.envres.2023.116816
Rusch, H., and Laurence, J.J.P. 1993. Interactive effects of ozone and powdery mildew on pea seedlings. Phytopath. 83:1258–1263 10.1094/Phyto-83-1258
Shahid, M., Singh, R.K., and Thushar, S. 2023. Proximate composition and nutritional values of selected wild plants of the United Arab Emirates. Molecules. 28(3):1504. 10.3390/molecules28031504
Shehzadi, A., Chaudhary, A., Aihetasham, A., Hussain, N., Naz, S., Aziz, T., and Alasmari, A.F. 2024. Determination of hydrolyzing and ethanolic potential of cellulolytic bacteria isolated from fruit waste. Ital. J of Food Sci. 36(1):127–141. 10.15586/ijfs.v36i1.2470
Singh, A., and Pandey, M.K. 2024. Advances in okra (Abelmoschus esculentus L.) breeding: integrating genomics for enhanced crop improvement. J Adv Biol Biotechnol. 27(5):397–407. 10.9734/jabb/2024/v27i5799
Singh, A., Agrawal, S., and Rathore, D.J.E.P. 2005. Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. Environ Pollut. 134(3):385–395. 10.1016/j.envpol.2004.09.017
Swedish International Development Agency. 2009. Male declaration crop report. Assessment report on impacts of air pollution on crops. Swedish International Development Agency, Stockholm, Sweden.
Teixeira, E., Fischer, G., van Velthuizen, H., van Dingenen, R., Dentener, F., Mills, G., Walter, C., and Ewert, F. 2011. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmos Environ. 45:2569–2576. 10.1016/j.atmosenv.2011.02.002
Tiwari, S., and Agrawal, M. 2009. Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere. 75(11):1492–1499. 10.1016/j.chemosphere.2009.02.034
Tiwari, U., Servan, A., and Nigam, D. 2017. Comparative study on antioxidant activity, phytochemical analysis and mineral composition of the Mung Bean (Vigna Radiata) and its sprouts. J of Pharma. & Phytoch. 6(1):336–340.
Tulbek, M.C., Wang, Y.L., and Hounjet, M. 2024. Pea—a sustainable vegetable protein crop. In: Sustainable protein sources. Academic Press, Cambridge, MA, pp. 143–162. 10.1016/B978-0-323-91652-3.00027-7
Wahid, A. 2006a. Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ. 371:304–313. 10.1016/j.scitotenv.2006.06.017
Wahid, A. 2006b. Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ. 40:5342–5354. 10.1016/j.atmosenv.2006.04.050
Wahid, A., Maggs, R., Shamsi, S.R.A., Bell, J.N.B., and Ashmore, M.R. 1995a. Air pollution and its impacts on wheat yield in the Pakistan Punjab. Environ Pollut. 88:147–154. 10.1016/0269-7491(95)91438-Q
Wahid, A., Maggs, R., Shamsi, S.R.A., Bell, J.N.B., and Ashmore, M.R. 1995b. Effects of air pollution on rice yield in the Pakistan Punjab. Environ Pollut. 90:323–329. 10.1016/0269-7491(95)00024-L
Wahid, A., Milne, E., Shamsi, S.R.A., Ashmore, M.R., and Marshall, F.M. 2001. Effects of oxidants on soybean growth and yield in the Pakistan Punjab. Environ Pollut. 113:271–280. 10.1016/S0269-7491(00)00190-1
Wedlich, K.V., Rintoul, N., Peacock, S., Cape, N.J., Coyle, M., Toet, S., Barnes, J., and Ashmore, M. 2012. Effects of ozone on species composition in an upland grassland. Oecologia. 168:1137–1146. 10.1007/s00442-011-2154-2
Yi, F., Jiang, F., Zhong, X., Zhou, A., and Ding, A. 2016. The impacts of surface ozone pollution on winter wheat productivity in China—an econometric approach. Environ Pollut. 208:326–335. 10.1016/j.envpol.2015.09.052
Yousaf, S., Khan, S.U., Haq, T.U., and Shah, S.A. 2024. Assessment of physical parameters and heavy metals in wastewater of selected industries in industrial estate Hayatabad, Peshawar. Sciencetech. 5(1):29–38.