The stability of phycocyanin extracted from Arthrospira platensis against osmotic, acid, and temperature stress conditions

Main Article Content

Niloofar Shafieiyoun
Mahshid Jahadi
Kianoush Khosravi-Darani

Keywords

arthrospira platensis, phycocyanin, response surface methodology, spirulina, stability

Abstract

The main problem of using natural blue pigment of phycocyanin produced by Arthrospira platensis (spirulina) is its instability in the food matrix because of environmental stress. This study aimed to investigate the stability of phycocyanin under simulated conditions in food formulations against osmotic, acid, and temperature stress conditions. Thermal degradation constant (Dc) and half-life (t½) of phycocyanin extracted from Arthrospira platensis were analyzed using response surface methodology followed by a first-order kinetic reaction. The stability of phycocyanin was assessed under various temperature (50–98ºC), NaCl (0–2% w/w), and pH (4–7) values. Results showed that the stability of phycocyanin extracted from Arthrospira platensis is high at neutral pH and concentration of 1% (w/w) NaCl. The stability decreased with increase in temperature at ≥75°C. The highest stability of phycocyanin (the lowest Dc and the maximum t½ were 0.011 min-1 and 54.03 min, respectively) was achieved at 66.89°C, pH = 6.6, and NaCl of 0.40% w/w. According to processing conditions, content of phycocyanin required for a food matrix is successfully calculated by the response surface method. This research showed that phycocyanin is stable at thermal shock in a neutral pH medium and low content of NaCl (0.40% w/w).

Abstract 422 | PDF Downloads 234 HTML Downloads 0 XML Downloads 42

References

Abdollahi F., Jahadi M., and Ghavami M. 2021. Thermal stability of natural pigments produced by Monascus purpureus in submerged fermentation. Food Sci Nutrit. 021: 1–8. 10.1002/fsn3.2425

Ansarifard F., Islami H.R., Mehrjan M.S., and Soltani M. 2017. The effect of dietary supplement spirulina (Arthrospira platensis) on the immune system and blood biochemical factors of Koi fish (Cyprinuscarpiocarpio). Iran Sci Fish J. 26(3): 23–32. 10.3382/ps/pey093

Antelo F.S., Costa J.A., and Kalil S.J. 2008. Thermal degradation kinetics of the phycocyanin from spirulina platensis. Biochem Eng J. 41(1): 43–7. 10.1016/j.bej.2008.03.012

Banayan S., Jahadi M., and Khosravi-Darani K. 2022. Pigment productions by Spirulina platensis as a renewable resource. J Appl Biotechnol Rep. 9(2): 614–21. 10.30491/JABR.2021.292076.1406

Barbiroli A., Marengo M., Fessas D., Ragg E., Renzetti S., Bonomi F., et al. 2017. Stabilization of beta-lactoglobulin by polyols and sugars against temperature-induced denaturationinvolves diverse and specific structural regions of the protein. Food Chem. 234: 155–62. 10.30491/JABR.2021.292076.1406

Beheshtipour H., Haratian P., Mortazavian A.M., and KhosraviDarani K. 2012. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties, Eur Food Res Technol. 235: 719–28. 10.1007/s00217-012-1798-4

Beheshtipour H., Mortazavian A.M., Mohammadi R., Sohrabvandi S., and Khosravi-Darani K. 2013. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic Fermented Milks. Comp Rev Food Sci Food Safety. 12 (2): 144–54. 10.1111/1541-4337.12004

Chaiklahan R., Chirasuwan N., and Bunnag B. 2012. Stability of phycocyanin extracted from spirulina sp.: influence of temperature, pH and preservatives. Proc Biochem. 47(4): 659–64. 10.1016/j.procbio.2012.01.010

Chen F., and Zhang Y. 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol. 20(3): 221–4. 10.1016/S0141-0229(96)00116-0

Doke J.M. 2005. An improved and efficient method for the extraction of phycocyanin from spirulina sp. Int J Food Eng. 1(5): 10.2202/1556-3758.1037

Fernández-Rojas B., Hernández-Juárez J., and Pedraza-Chaverri J. 2014. Nutraceutical properties of phycocyanin. J Funct Foods. 11: 375–92. 10.1016/j.jff.2014.10.011

Ferreira-Santos P., Nunes R., De Biasio F., Spigno, Gorgoglione G.D., Teixeira J.A., et al. 2020. Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and bio-compounds recovery from Spirulina platensis. Food Sci Technol (LWT). 128: 109491.

Gami B., Naik A., and Patel B. 2011. Cultivation of spirulina species in different liquid media. J Algal Biomass Utilizat. 2(3): 15–26. 10.1016/j.lwt.2020.109491

Ghaeni M., Roomiani L., and Moradi, Y. 2014. Evaluation of Carotenoids and Chlorophyll as Natural Resources for Food in Spirulina Microalgae. Applied Food Biotechnology, 2(1), 39–44. 10.22037/afb.v2i1.7210

Hadiyanto A., Christwardana M., and Sutanto H. 2019. Effects of sugar addition on the thermal degradation of phycocyanin from spirulina sp. Food Biosci J. 3:102–110. 10.1016/j.fbio.2018.01.007

Hoseini S.M., Khosravi-Darani K., and Mozafari M.R. 2013b. Nutritional and medical applications of spirulina microalgae. Minirev Med Chem. 13: 1231–7. 10.2174/1389557511313080009

Hoseini S.M., Shahbazizadeh S., Khosravi-Darani K., and Mozafari M.R. 2013a. Spirulina paltensis: Food and Function, Current Nutrition & Food Science, 9(3): 189-193. 10.2174/1573401311309030003

Li J., Li X.D., Zhang Y., Zheng Z.D., Qu Z.Y., Liu M., et al. 2013. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem. 136(3–4): 1429–34. 10.1016/j.foodchem.2012.09.054

Martelli G., Folli C., Visai L., Daglia M., and Ferrari D. 2014. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Proc Biochem. 49(1): 154–9. 10.1016/j.procbio.2013.10.008

Massoud R., Khosravi-Darani K., Nakhsaz F., and Varga L. 2015. Evaluation of physico-chemical, microbiological and sensory properties of croissants fortified with Arthrospira platensis (spirulina). Czech J Food Sci. 34(4): 350–5 10.17221/289/2015-CJFS

Mazinani S., Fadaei V., and Khosravi-Darani K. 2016. Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of Probiotic UF feta cheese. J Food Proc Preserv. 40(6): 1318–24. 10.1111/jfpp.12717

Pan-utai W., Poopat N., and Parakulsuk P. 2020. Photoautotrophic cultivation of Arthrospira maxima for protein accumulation under minimum nutrient availability. Appl Food Biotechnol. 7(4), 225–234. 10.22037/afb.v7i4.30353

Priatni, S. 2015. Encapsulation and stability study of Monascus fermented rice extract. Procedia Chem. 17: 189–93. 10.1016/j.proche.2015.12.118

Safari R., Raftani-Amiri Z., and Esmaeilzadeh-Kenari R. 2018. Evaluation of the effect of temperature, time and pH on stability of phycocyanin extracted from Spirulina platensis. Iran Sci Fish J. 26(5): 85–93. 10.22092/ISFJ.2017.115342

Santiago-Morales I.S., Trujillo-Valle L., Márquez-Rocha F.J., and López Hernández J.F. 2018. Tocopherols, phycocyanin and superoxide dismutase from microalgae: as potential food anti-oxidants. Appl Food Biotechnol. 5(1), 19–27. 10.22037/afb.v5i1.17884

Sarada R.M., Pillai M.G., and Ravishankar G.A. 1999. Phycocyanin from spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Proc Biochem. 34(8): 795–801. 10.1016/S0032-9592(98)00153-8

Soheili M., Rezaei K., Mortazavi A., Khosravi-Darani K., Hashemi M., Komeili R., et al. 2013. Phycocyanin production by Spirulina platensis. Iran J Nutr Sci Food Technol. 7(5): 787–797. http://nsft.sbmu.ac.ir/article-1-1080-en.html

Vendruscolo F., Müller B.L., Moritz D.E., de Oliveira D., Schmidell W., and Ninow J.L. 2013. Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatal Agric Biotechnol. 2(3): 278–84. 10.1016/j.bcab.2013.03.008

Wang L., Zhao Y., Zhou Q., Luo C.L., Deng A.P., Zhang Z.C., and Zhang J.L. 2017. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). J Food Drug Anal. 25(3): 607–18. 10.1016/j.jfda.2016.10.009

Zeng X., Danquah M.K., Zhang S., Zhang X., Wu M., Chen X.D., et al. 2012. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng J. 183: 192–7. 10.1016/j.cej.2011.12.062