Usefulness of Moringa oleifera seed extract as Coagulant for the production of fresh camel cheese
Main Article Content
Keywords
camel milk, cheese, clotting activity, extraction yield, MSE
Abstract
The current study aimed to enhance the coagulation properties of camel milk using enzymatic extracts derived from Moringa oleifera seeds. Experiments were conducted to evaluate the clotting activities of Moringa extract on camel milk and compare them with cow milk. Our results regarding the characterisation of the enzymatic extract showed an extraction yield of 54.3±1.8%. The optimum coagulation conditions were determined to be pH 5 and a temperature of 55°C. In addition, the enzymes exhibited substantial clotting activity (2.54 RU) on both camel and cow milk. The cheese samples showed significant oxidative and antibacterial activity.
References
Albala-Hurtado S., Veciana-Nogues M.T., IzquierdoPulido M., & Mariné-Font A. (1997). Determination of water-soluble vitamins in infant milk by high-performance liquid chromatography. Journal of Chromatography A, 778, 247–253. 10.1016/s0021-9673(97)00387-7
Amirdivani Sh., Hj Baba A.S. (2011). Changes in yogurt fermentation characteristics. Moreover, antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint. dill and basil. LWT, 44(6), 1458–1464. 10.1016/j.lwt.2011.01.019
Amna E.T., Ebraheem A.S.A., Abdelmoez M.A., Fatima J. Khider. F.J., Mohamed O.E., et al. (2014). Partial purification of milk clotting enzyme from the seeds of Moringa oleifera. Journal of Microbiology Biotechnology and Food Sciences, 4(1), 58–62. 10.15414/jmbfs.2014.4.1.58-62
Anusha R. Singh M.K., & Bindhu O.S. (2014). Characterization of potential milk coagulants from Calotropis gigantean plant parts and their hydrolytic pattern of bovine casein. European Food Research and Technology, 238, 997–1006. 10.1007/s00217-014-2177-0
Ashraf A., Mudgil P., Palakkott A., Iratni R., Gan C.Y., Maqsood S., et al. (2021). Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. Journal of Dairy Science, 104(2021), 61–77. 10.3168/jds.2020-18627.
Attia H., Kherouatou N., Nasri M., & Khorchani T. (2000). Characterization of the dromedary milk casein micelle and study of its changes during acidification. Le Lait, 80, 503–515. 10.1051/lait:2000141
Baba M.D., Yakubu G., Yelwa J.M., & Haruna L. (2015). Costs and Returns of Moringa (Moringa oleifera) Production in Zuru Local Government Area of Kebbi State. Nigeria. New York Science Journal, 8(1), 36–40.
Barefoot S.F., & Klaenhammer T.R. (1983). Detection and activity of lacticin B. a bacteriocin produced by Lactobacillus acidophilus. Applied and Environmental Microbiology, 45, 1808–1815. 10.1128/aem.45.6.1808-1815.1983
Barrett A.J., Rawlings N.D., & Woessner J.F. (1998). Handbook of proteolytic enzymes (pp. 843–846). Academic Press: SanDiego. CA. USA.
Bekele B. (2023). Innovative approach of cheese making from camel milk: a review. IntechOpen, 10.5772/intechopen.108700
Bengana M. (2001). Isolement, purification et caractérisation des enzymes protéolytiques (pepsine. chymosine) issues de caillettes de bovins adultes; incorporation de ces préparations dans la fabrication du fromage à pâte molle type camembert à la laiterie de Draa Ben Khada (Thèse de Magister). Institut National Agronomique.El-Harrach.Alger.
Benyahia F.A. (2013). Thèse. Extraction de la pepsine et utilisation dans l coagulation du lait en vue d’une valorisation des proventricules de volailles au profit de la filière lait en Algérie (pp. 173). Université de Constantine.
Berridge N.J. (1945). The purification and crystallization of rennin. The Biochemical Journal, 39, 179–186. 10.1042/bj0390179
Boudjenah H.S. (2012). Aptitudes à la transformation du lait de chamelle en produits dérivés: effet des enzymes coagulantes extraites de caillettes de dromadaires (PhD. Thesis). Universite Mouloud Mammeri de TiziOuzou (Algérie). Tizi Ouzou. Algeria.
Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. 10.1006/abio.1976.9999
Brand-Williams W., Cuvelier M.E., & Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. 10.1016/S0023-6438(95)80008-5
Castillo A.R., Meehl J.B., Morgan G., Schutz-Geschwender A., & Winey M. (2002). The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p.” Journal of Cell Biology, 156(3), 453–465. 10.1083/jcb.200111025
Collin J.C. Grappin R., & Legraet Y. (1977). Etude de la méthode de mesure selon BERRIDGE. du temps de coagulation du lait additionné d’une solution enzymatique. Revue Laitière Française, 355, 389–394.
Dalei J., Rao V., Sahoo D., Rukmini M., & Ray R. (2016). Review on nutritional and pharmacological potencies of Moringa oleifera. European Journal Of Pharmaceutical and Medical Research 3(1):150–155
De Lima C.J., Coelho L.F. & Contiero J. (2010). The use of response surface methodology in optimization of lactic acid production: focus on medium supplementation. temperature and pH control. Food Technology and Biotechnology, 48(2), 175–181.
Doumandji A., Hellal A., & Saidi N. (2010). Purification de la bactériocine à partir de Lactobacillus acidophilus 11. Revue de Microbiologie Industrielle, Sanitaire, et Environnementale, 4(2), 25–47.
Farah Z. & Rüegg M.W. (1989). The size distribution of casein micelles in camel milk. Food Microstructure, 8, 211–216. 10.1017/S0022029900024183
Fguiri I., Atigui M., Sboui A., Arroum S., Marzougui Ch., Dbara M., et al. (2021). Camel Milk-Clotting Using Plant Extracts as a Substitute to Commercial Rennet. Journal of Chemistry, 2021, 6680246. 10.1155/2021/6680246
Gnan S. O., & Sheriha A. M. (1986). Composition of Libyan camel milk. Australian Journal of Dairy Technology, 41, 33–35.
Gorban A.M.S., & Izzeldin O.M. (2001). Fatty acids and lipids of camel milk and colostrum. International Journal of Food Sciences and Nutrition, 52(3), 283–287. 10.1080/713671778
Hwanhlem N., Buradaleng S., Wattanachant S., Benjakul S., Tani A., & Maneerat S. (2011). Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control, 22(3–4), 401–407. 10.1016/j.foodcont.2010.09.010
Idris M.A., Jami M.S., Hammed A.M., & Jamal P. (2016). Moringa oleifera seed extract: A review on its environmental applications. International Journal of Applied Environmental Sciences, 11, 1469–1486.
Jacob M., Jaros D., & Rohm H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33. 10.1111/j.1471-0307.2010.00633.x
Jrad Z., El Hatmi H., Fguiri I., Arroum S., Assadi M., & Khorchani T. (2013). Antibacterial activity of Lactic acid bacteria isolated from Tunisian camel milk. New Microbes and New Infections, 7(12), 1002–1008. 10.5897/AJMR12.488
Kasolo J.N., Bimenya G.S., Ojok L., Ochieng J., & Ogwal-Okeng J.W. (2010). Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. Journal of Medicinal Plants Research, 4(9), 753–757. 10.5897/JMPR10.492
Konuspayeva G., Loiseau G., & Faye B. (2004). La plus-value «santé» du lait de chamelle cru et fermenté : l’expérience du Kazakhstan. Rencontres autour des Recherches sur les Ruminants, 11.
Krishnankutty R., Iskandarani A., Therachiyil L., Uddin S., Azizi F., Kulinski M., Bhat A.A., & Mohammad R.M. (2018). Anti-cancer activity of camel milk via induction of autophagic death in human colorectal and breast cancer cells. Asian Pacific Journal of Cancer Prevention, 19. 3501. 10.31557/APJCP.2018.19.12.3501
Lobato-Calleros C., Ramos-Solis L., Santos-Moreno A., & Rodriguez-Huezo M. (2006). Microstructure and texture of panela type cheese-like products: use of low methoxyl pectin and canola oil as milk-fat substitutes. Revista Mexicana de Ingeniería Química, 5, 71–79. 2006.
Macedo I.Q., Faro C.J., & Pires E.M. (1996). Caseinolytic Specificity of Cardosin. An Aspartic Protease from the Cardoon Cynara cardunculus L. Action on Bovine β-and α-Casein and Comparison with Chymosin. Journal of Agricultural and Food Chemistry, 44, 42–47. 10.1021/jf9406929
Macheix J.J. Fleuriet A., & Jay-Allemand C. (2005). Les composés phénoliques des végétaux. Un exemple de métabolites secondaires d’importance économique. Presses Polytechniques et Universitaires Romandes, CH-1015, 192.
Martin Rosset W. (2012). Nutrition et alimentation des chevaux. Nouvelles recommandations alimentaires de l’Inra. Ouvrage collectif. Éditions Quæ. pp. 1952–1251.
Mbye M., Sobti B., & Al Nuami K.M. (2020). Physicochemical properties. sensory quality. and coagulation behaviour of camel versus bovine milk soft unripened cheeses. NFS Journal, 20, 28–36. 10.1016/j.nfs.2020.06.003
Meziani S., Oomah B.D., Zaidi F., Simon-Levert A., Bertrand C., & Zaidi-Yahiaoui R. (2015). Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microbial Pathogenesis, 78, 95–102. 10.1016/j.micpath.2014.12.001
Miliauskas G., Venskutonis P.R. & Van Beek T.A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85, 231–237. 10.1016/j.foodchem.2003.05.007
Mohamed Ahmed I.A., Morishima I., Babiker E.E. & Mori N. (2009a). Characterization of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chemistry, 116 (2), 395–400. 10.1016/j.foodchem.2008.11.072
Mohamed Ahmed I.A., Morishima I., Babiker E.E. & Mori N. (2009b). Dubiumin. a chymotrypsin like serine protease from the seeds of Solanum dubium Fresen. Phytochemistry, 70(4), 483–491. 10.1016/j.phytochem.2009.01.016
Mohamed Ahmed I.A., Babiker E.E., & Mori N. (2010). pH stability and influence of salts on activity of a milk-clotting enzyme from Solanum dubium seeds and its enzymatic action on bovine caseins. LWT-Food Science and Technology, 43, 759–764. 10.1016/j.lwt.2009.12.011
Morrin S.T., Buck R.H., Farrow M., Hickey R.M. (2021). Milk-derived anti-infectives and their potential to combat bacterial and viral infection. Journal of Functional Foods, 81, 104442. 10.1016/j.jff.2021.104442
Moyo B., Masika P.J., Hugo A., & Muchenje V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933. 10.5897/AJB10.1599
Ozturkoglu-Budak S., & De Vries R.P. (2017). Mold-ripened and raw milk cheeses: Production. risks. and benefits to human health. Dairy in Human Health and Disease across the Lifespan. Elsevier, 353–361. 10.1016/B978-0-12-809868-4.00027-3
Paquot, C. (2013). Standard Methods for the Analysis of Oils, Fats and Derivatives. Elsevier.
Pyo Y.H., Lee T.C., & Lee Y.C. (2006). Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. Journal of Food Science, 70(3), S215–S220. 10.1111/j.1365-2621.2005.tb07160.x
Pyz-Łukasik R., Knysz P. & Gondek M. (2018). Hygiene quality and consumer safety of traditional short-and long-ripened cheeses from Poland. Journal of Food Quality, 2018, 1–7. 10.1155/2018/8732412
Ramet J.P. (1989). Production de Fromages à Partir de Lait de Chamelle en Tunisie (pp. 1–33). FAO. Rome. Italy.
Ramet J.P. (1997). Technologie comparée des differents types de caillés. in Le Fromage. A. Eck & J. C. Gillis. (Eds.). Technique & Documentation (pp. 333–364). Lavoisier. Paris. France. 1997.
Ramet J.P. (2001). The Technology of Making Cheese from Camel Milk (Camelus dromedarius). Food Agriculture Organisation. Rome. Italy.
Roseiro L.B., Barbosa M.M., Ames J. & Wilbey R. (2003). Cheese making with vegetable coagulants; the use of Cynara cardunculus L. for the production of ovine milk cheeses. International Journal of Dairy Technology, 56, 76–85. 10.1046/j.1471-0307.2003.00080.x
Sánchez-Muñoz M.A., Valdez-Solana M.A., Avitia-Domínguez C., Ramírez-Baca P., Candelas-Cadillo M.G., Aguilera-Ortíz M., et al. (2017). Utility of milk coagulant enzyme of Moringa oleifera seed in cheese production from soy and skim milks. Foods, 6(8), 62. 10.3390/foods6080062
Sboui A., Atig C., Khabir A., Hammadi M., & Khorchani T. (2022). Camel milk used as an adjuvant therapy to treat type 2 diabetic patients: effects on blood glucose. HbA1c. cholesterol. and TG levels. Journal of Chemistry, 5860162(2022), 1–6. 10.1155/2022/5860162
Shetty Sh., Secnik K., & Oglesby A.K. (2005). Relationship of glycemic control to total diabetes-related costs for managed care health plan members with type 2 diabetes. Journal of Managed Care Pharmacy, 11(7), 559–64. 10.18553/jmcp.2005.11.7.559
Siboukeur O., Mati A., & Hessas B. (2005). Amélioration de l’aptitude à la coagulation du lait cameline (Camelus dromedarius): utilisation d’extraits enzymatiques coagulants gastriques de dromadaires. Cahiers Agricultures, 14(5). 473–478.
Sidrach L., García-Cánovas F., Tudela J., & Rodríguez-López J.N. (2005). Purification of cynarases from artichoke (Cynara scolymus L.): Enzymatic properties of cynarase A. Phytochemistry, 66(2005), 41–49. 10.1016/j.phytochem.2004.10.005
Silvestre M.P.C, Carreira R.L., Silva M.R., Corgosinho F.C., Monteiro M.R.P., & Morais H.A. (2012). Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food and Bioprocess Technology, 5(5), 1824–1831. 10.1007/s11947-011-0616-5
Tajalsir A.E., Ebraheem A.S., Abdallah A.M., Khider F.J., Elsamani M.O., & Ahmed I.A.M. (2014). Partial purification of milk-clotting enzyme from the seeds of Moringa oleifera. Journal of Microbiology, Biotechnology and Food Sciences. 4, 58. 10.15414/jmbfs.2014.4.1.58-62
Thompson J.K., Collins M.A., & Mercer W.D. (1996). Characterization of a proteinaceous antimicrobial produced by Lactobacillus helveticus CNRZ 450. Journal of Applied Bacteriology, 80, 338–348. 10.1111/j.1365-2672.1996.tb03229.x
Tomás-Menor L., Morales-Soto A., Barrajón-Catalán E., Roldán-Segura C., Segura-Carretero A., et al. (2013). Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food and Chemical Toxicology, 55, 313–322. 10.1016/j.fct.2013.01.006
Torres-Llanez M.J., Vallejo-Cordoba B., Dıaz-Cinco M.E., Mazorra-Manzano M.A., & Gonzalez-Cordova A.F. (2006). Characterization of the natural microflora of artisanal Mexican Fresco cheese. Food Control, 17(9), 683–690. 10.1016/j.foodcont.2005.04.004
Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., & Iinuma M. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 50(1), 27–34. 10.1016/0378-8741(96)85514-0
Veisseyre R. (1979). Technologie du Lait: Constitution. R´ecolte. Traitement et Transformation du Lait (pp. 9–33). La Maison Rustique. Paris. France.
Verissimo P., Esteves C., Faro C., & Pires E. (1995). The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsin-like specificities. Biotechnology Letters, 17, 614–645. 10.1007/BF00129389
Wang H., Ullah M.M., Klaser A., Laptev I. & Schmid C. (2009). Evaluation of local spatio-temporal features for action recognition. Presented at BMVC 2009-British Machine Vision Conference. 10.5244/C.23.124
Yonas H., Eyassu S., & Zelalem Y. (2014). Clotting activity of camel milk using crude extracts of ginger (Zingiber officinale) rhizome. African Journal of Food Science and Technology, 5(3), 90–95. 10.14303/ajfst.2013.047