The organoleptic and nutritional characteristics of innovative high-fiber khalas date-based bar

Main Article Content

Hassan Barakat https://orcid.org/0000-0002-8358-4835
Abdulkarim S.M. Almutairi

Keywords

food supply, functional foods, glycemic index, healthy snacks, innovative high-fiber, nutrition

Abstract

Making functional and nutritionally balanced date bars is of innovative concern. The current study intends to create a novel high-fiber and nutritious Khalas date-based bar (KDBB). The proximate composition, mineral contents, sugar profile, amino and fatty acids profile, volatiles and phytochemicals, antioxidant activity, and an in vitro digestion of protein and carbohydrates for bar formula containing 50% Khalas dates (KD) were investigated. Results indicated that protein, fat, ash, fiber, available carbohydrates, and vitamin C were 9.34, 4.93, 2.05, 8.01, 54.04 g 100 g-1, and 16.67 mg, respectively. Potassium, magnesium, phosphorus, and calcium were present in abundance. Sucrose had the highest sugar concentration at 246.35 mg g-1. Total phenolic content (TPC) was 547.19 mg gallic acid equivalent 100 g-1, giving 719.39 and 815.98 µmol of Trolox equivalent (TE) 100 g-1 for 2,2-diphenylpicrylhy-drazyl radical scavenging activity (DPPH-RSA) and 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)-RSA, respectively. Total carotenoids, flavonoids, and flavonols were 327.19 mg 100 g-1, 998.25 mg quercetin equivalent 100 g-1, and 749.57 mg QE 100 g-1, respectively. The highest discovered phenolics, flavonoids, and isoflavone were pyrocatechol (10249.73 μg g-1), catechin (193.50 μg g-1), and daidzein (18.77 μg g-1), respectively. Lysine was the highest among the essential amino acids. Saturated and unsaturated fatty acids were 43.73% and 56.27%, respectively. The omega-6 fatty acid, cis-8,11,14-eicosatrienoic, was predominant with a 31.08% valuation. The gas chromatography–mass spectrometry analysis identified 17 compounds, with a predominant presence of 9,12-octadecadienoyl chloride (38.13 g 100 g-1). The glycemic index (GI) of KDBB was 39.97, which was lower than KD’s score (54.12). In conclusion, prepared KDBB could present a good idea for consuming dates and the based products with high fiber content and lower GI. Scaling up such products could be helpful to health-conscious individuals.

Abstract 672 | PDF Downloads 644 HTML Downloads 0 XML Downloads 41

References

Al-Dashti Y.A., Holt R.R., Keen C.L. and Hackman R.M. 2021. Date palm fruit (Phoenix dactylifera): effects on vascular health and future research directions. Int J Mol Sci. 22: 4665. 10.3390/ijms22094665

Al-Farsi M., Alasalvar C., Al-Abid M., Al-Shoaily K., Al-Amry M. and Al-Rawahy F. 2007. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 104: 943–47. 10.1016/j.foodchem.2006.12.051

Al-Farsi M., Alasalvar C., Morris A., Baron M. and Shahidi F. 2005. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera l.) varieties grown in Oman. J Agric Food Chem. 53: 7592–7599. 10.1021/jf050579q

Alfheeaid H.A., Barakat H., Althwab S.A., Musa K.H. and Malkova D. 2023. Nutritional and physicochemical characteristics of innovative high energy and protein fruit-and date-based bars. Foods. 12: 2777. 10.3390/foods12142777

Al-Harrasi A., Rehman N.U., Hussain J., Khan A.L., Al-Rawahi A., Gilani S.A., et al. 2014. Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac J Trop Med. 7: S591–S598. 10.1016/S1995-7645(14)60294-7

Al Harthi S.S., Mavazhe A., Al Mahroqi H. and Khan S.A. 2015. Quantification of phenolic compounds, evaluation of physicochemical properties and antioxidant activity of four date (Phoenix dactylifera l.) varieties of Oman. J. Taibah Univ Sci. 10: 346–352. 10.1016/j.jtumed.2014.12.006

Alhomaid R.M., Samani A.M.A., Algheshairy R.M. and Ali R.F.M. 2022. Physico-chemical, sensory and nutritional evaluation of date bars fortified with different levels of germinated flaxseed powder. World J Food Sci Tech. 6(4): 89–96. 10.11648/j.wjfst.20220604.11

Al-Hooti S., Sidhu J., Al-Otaibi J., Al-Ameeri H. and Al-Qabazard H. 1997. Date bars fortified with almonds, sesame seeds, oat flakes and skimmed mik powder. Plant Foods Hum Nutr. 51: 125–135. 10.1023/A:1007959526896

Ali A., Al-Kindi Y.S.M. and Al-Said F. 2009. Chemical composition and glycemic index of three varieties of omani dates. Int J Food Sci Nutr. 60: 51–62. 10.1080/09637480802389094

Aljutaily T., Barakat H., Moustafa M.M. and Rehan M. 2021. Incorporation of Sukkari date in probiotic-enriched fermented camel milk improves the nutritional, physicochemical, and organoleptical characteristics. Fermentation. 8: 5. 10.3390/fermentation8010005

Al-Sayyed H.F., Abu-Qatouseh L.F., Malkawy M., Al-Wawi S. and Al Kafaween M. 2021. Extracts of Jordanian date palm fruit (Phoenix dactylifera l.) inhibit human mammary adenocarcinoma (mcf-7) cells in vitro by inducing cell viability. Curr Res Nutr Food Sci. 9: 423–430. 10.12944/CRNFSJ.9.2.06

Al-Shahib W. and Marshall R.J. 2003. The fruit of the date palm: its possible use as the best food for the future? Int J Food Sci Nutr. 54: 247–259. 10.1080/09637480120091982

Al-Zeiny S.S.M., Alyaqubi K.J. and Abbas D.A.H. 2022. In vitro: anticancer effect of oily and methanolic extracts of Al-zahdi (Phoenix dactylifera l.) from dry dates and leaves on AMN3, HELA and REF cancer cell cultures. Kufa J Vet Med Sci. 13: 1–12. 10.36326/kjvs/2022/v13i23303

Amadou I. 2016. Date fruits: nutritional composition of dates (Balanites aegyptiaca delile and Phoenix dactylifera l.). In: Nutritional composition of fruit cultivars. Academic Press. Elsevier. pp. 215–233. 10.1016/B978-0-12-408117-8.00010-6

Amira E.A., Guido F., Behija S.E., Manel I., Nesrine Z., Ali F., Mohamed H., Noureddine H.A. and Lotfi A. 2011. Chemical and aroma volatile compositions of date palm (Phoenix dactylifera l.) fruits at three maturation stages. Food Chem. 127: 1744–1754. 10.1016/j.foodchem.2011.02.051

Aribas M., Kahraman K. and Koksel H. 2020. In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran. J Funct Foods. 65: 103778. 10.1016/j.jff.2020.103778

Arshad M.S., Batool S.M., Khan M.K., Imran M., Ahmad M.H., Anjum F.M. and Hussain S. 2019. Bio-evaluation of functional date bars using rats as model organism against hypercholesterolemia. Lipids Health Dis. 18: 1–13. 10.1186/s12944-019-1087-3

Assirey E.A.R. 2015. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera l.) cultivars grown in Saudi Arabia. J Taibah Univ Sci. 9: 75–79. 10.1016/j.jtusci.2014.07.002

Association of Official Analytical Chemists (AOAC). 2012. Official methods of analysis of the AOAC. Rockville, MD: AOAC.

Ayad A.A., Williams L.L., Gad El-Rab D.A., Ayivi R., Colleran H.L., Aljaloud S. and Ibrahim S.A. 2020. A review of the chemical composition, nutritional and health benefits of dates for their potential use in energy nutrition bars for athletes. Cogent Food Agric. 6: 1809309. 10.1080/23311932.2020.1809309

Barakat H. and Alfheeaid H.A. 2023. Date palm fruit (Phoenix dactylifera) and its promising potential in developing functional energy bars: review of chemical, nutritional, functional, and sensory attributes. Nutrients. 15: 2134. 10.3390/nu15092134

Barakat H. and Almundarij T.I. 2020. Phenolic compounds and hepatoprotective potential of Anastatica hierochuntica ethanolic and aqueous extracts against ccl4-induced hepatotoxicity in rats. Tradit Chin Med. 40: 947. 10.3390/nu13092973

Bedekar A., Shah K. and Koffas M. 2010. Natural products for type II diabetes treatment. In: Adv. Appl. Microbiol, Chap 2. Academic Press. 71: 21-73. 10.1016/S0065-2164(10)71002-9

Benmeddour Z., Mehinagic E., Meurlay D.L. and Louaileche H. 2013. Phenolic composition and antioxidant capacities of ten algerian date (Phoenix dactylifera l.) cultivars: a comparative study. J Funct Foods. 5: 346–354. 10.1016/j.jff.2012.11.005

Bettaieb I., Bourgou S., Wannes W.A., Hamrouni I., Limam F. and Marzouk B. 2010. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum l.). J Agri Food Chem. 58: 10410–10418. 10.1021/jf102248j

Blouth V.I., Charaezinoki N. and Berlec H. 1962. A new rapid methods for determination tryptophan. Anal Biochem. 6: 69–70.

Borah S., Baruah A., Das A. and Borah J. 2009. Determination of mineral content in commonly consumed leafy vegetables. Food Anal Methods. 2: 226–230. 10.1007/s12161-008-9062-z

Brufau G., Boatella J. and Rafecas M. 2006. Nuts: source of energy and macronutrients. Br J Nutr. 96: S24–S28. 10.1017/BJN20061860

Chavan U.D., McKenzie D.B. and Shahidi F. 2001. Protein classification of beach pea (Lathyrus maritimus l.). Food Chem. 75: 145–153. 10.1016/S0308-8146(01)00122-4

Cohen S.A., Meys M. and Travin T.L. 1989. The pico tag method a manual of advanced techniques for amino acid analysis. Milford, MA: Waters Corporation, Chromatography Division, US.

Daoud A., Malika D., Bakari S., Hfaiedh N., Mnafgui K., Kadri A., et al. 2019. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two Tunisian cultivars. Arab J Chem. 12: 3075–3086. 10.1016/j.arabjc.2015.07.014

Dardjito E., Proverawati A., Sumeru A., Setiyani R., Upoyo A. and Kamaludin R. 2019. Date seeds (Phoenix dactylifera l.) consumption as anti-inflammatory and immunostimulant: a systematic review. In: IOP conference series: Earth and environmental science, V. 250, International Conference on Sustainable Agriculture for Rural Development (ICSARD), 23–24 October, Purwokerto, Indonesia 10.1088/1755-1315/250/1/012038

Djaoudene O., Mansinhos I., Gonçalves S., Jara-Palacios M.J., Bachir bey M. and Romano A. 2021. Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different algerian cultivars of date (Phoenix dactylifera l.) were affected by in vitro simulated gastrointestinal digestion. S Afr J Bot. 137: 133–148. 10.1016/j.sajb.2020.10.015

El Abed H., Chakroun M., Fendri I., Makni M., Bouaziz M., Drira N., et al. 2017. Extraction optimization and in vitro and in vivo anti-postprandial hyperglycemia effects of inhibitor from Phoenix dactylifera l. Parthenocarpic fruit. Biomed Pharmacother. 88: 835–843. 10.1016/j.biopha.2017.01.129

Elleuch M., Besbes S., Roiseux O., Blecker C., Deroanne C., Drira N.-E., et al. 2008. Date flesh: chemical composition and characteristics of the dietary fibre. Food Chem. 111: 676–682. 10.1016/j.foodchem.2008.04.036

Farag M.A., Mohsen M., Heinke R. and Wessjohann L.A. 2014. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–QTOF-MS and GC–MS analyzed by chemometrics. Food Res Int. 64: 218–226. 10.1016/j.foodres.2014.06.021

Fernández-López J., Viuda-Martos M., Sayas-Barberá E., Navarro-Rodríguez de Vera C. and Pérez-Álvarez J.Á. 2022. Biological, nutritive, functional and healthy potential of date palm fruit (Phoenix dactylifera l.): current research and future prospects. Agronomy. 12: 876. 10.3390/agronomy12040876

Fisher E.A. and Ginsberg H.N. 2002. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem. 277: 17377–17380. 10.1074/jbc.R100068200

Gámbaro A. and McSweeney M.B. 2020. Sensory methods applied to the development of probiotic and prebiotic foods. Editor(s): Cruz A.G., Prudencio E.S., Esmerino E.A., and da Silva M.C. (Eds.) In: Adv. Food Nutr. Res. Chapter 8. Academic Press. 94: 295-337. 10.1016/bs.afnr.2020.06.006

Giuntini E.B., Sardá F.A.H. and de Menezes E.W. 2022. The effects of soluble dietary fibers on glycemic response: an overview and futures perspectives. Foods. 11: 3934. 10.3390/foods11233934

Hamad I., Abd Elgawad H., Al Jaouni S., Zinta G., Asard H., Hassan S., et al. 2015. Metabolic analysis of various date palm fruit (Phoenix dactylifera l.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules. 20: 13620–13641. 10.3390/molecules200813620

Hardy D.S., Garvin J.T. and Xu H. 2020. Carbohydrate quality, glycemic index, glycemic load and cardiometabolic risks in the US, Europe and Asia: a dose–response meta-analysis. Nutr Metab Cardiovasc Dis. 30: 853–871. 10.1016/j.numecd.2019.12.050

Hoppe C., Andersen G.S., Jacobsen S., Mølgaard C., Friis H., Sangild P.T., et al. 2008. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups. J Nutr. 138: 145S–161S. 10.1093/jn/138.1.145S

Hussain M.I., Farooq M. and Syed Q.A. 2020. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera l.)—a review. Food Biosci. 34: 100509. 10.1016/j.fbio.2019.100509

Ibrahim S.A., Fidan H., Aljaloud S.O., Stankov S. and Ivanov G. 2021. Application of date (Phoenix dactylifera l.) fruit in the composition of a novel snack bar. Foods. 10: 918. 10.3390/foods10050918

Ishurd O. and Kennedy J.F. 2005. The anti-cancer activity of polysaccharide prepared from Libyan dates (phoenix dactylifera l.). Carbohydr Polym. 59: 531–535. 10.1016/j.carbpol.2004.11.004

Ismail B., Haffar I., Baalbaki R., Mechref Y. and Henry J. 2006. Physico-chemical characteristics and total quality of five date varieties grown in the United Arab Emirates. Int J Food Sci. 41: 919–926. 10.1111/j.1365-2621.2005.01143.x

Jabeen S., Huma N., Sameen A. and Zia M.A. 2020. Formulation and characterization of protein-energy bars prepared by using dates, apricots, cheese and whey protein isolate. Food Sci Technol. 41: 197–207. 10.1590/fst.12220

Jabeen S., Javed F., Hettiarachchy N.S., Sahar A., Sameen A., Khan M.R., et al. 2022. Development of energy-rich protein bars and in vitro determination of angiotensin I-converting enzyme inhibitory antihypertensive activities. Food Sci Nutr. 10(4): 1239–1247. 10.1002/fsn3.2756

Kamal H., Hamdi M., Mudgil P., Aldhaheri M., Baig M.A., Hassan H.M., et al. 2023. Nutraceutical and bioactive potential of high-quality date fruit varieties (Phoenix dactylifera l.) as a function of in-vitro simulated gastrointestinal digestion. J Pharm Biomed Anal. 223: 115113. 10.1016/j.jpba.2022.115113

Kamel B.S. and Kramer A. 1977. Development of high-protein date bars and their stability at different storage temperatures. J Food Qual. 1: 359–371. 10.1111/j.1745-4557.1977.tb01071.x

Kaushik B., Sharma J., Kumar P. and Shourie A. 2021. Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosci Biotechnol Res Asia. 18: 23. 10.13005/bbra/2894

Khalifa I., Barakat H., El-Mansy H. and Soliman S. 2016. Optimizing bioactive substances extraction procedures from guava, olive, and potato processing wastes and evaluating their antioxidant capacity. J Food Chem Nanotechnol. 2: 170–177. 10.17756/jfcn.2016-027

Khalil J., Sawaya W., Khatchadourian H. and Safi W. 1984. Fortification of date bars with yeast proteins and dry skimmed milk. Can Inst Food Technol J. 17: 131–136. 10.1016/S0315-5463(84)72501-6

Kim K.-H., Tsao R., Yang R. and Cui S.W. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95: 466–473. 10.1016/j.foodchem.2005.01.032

Kumar A., Sahoo U., Baisakha B., Okpani O.A., Ngangkham U., Parameswaran C., et al. 2018. Resistant starch could be decisive in determining the glycemic index of rice cultivars. J Cereal Sci. 79: 348–353. 10.1016/j.jcs.2017.11.013

Kumaran A. and Karunakaran R.J. 2007. In vitro antioxidant activities of methanol extracts of five phyllanthus species from India. Food Sci Technol (LWT). 40: 344–352. 10.1016/j.lwt.2005.09.011

Maqsood S., Adiamo O., Ahmad M. and Mudgil P. 2020. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 308: 125522. 10.1016/j.foodchem.2019.125522

Mrabet A., Jiménez-Araujo A., Guillén-Bejarano R., Rodríguez-Arcos R. and Sindic M. 2020. Date seeds: a promising source of oil with functional properties. Foods. 9: 787. 10.3390/foods9060787

Munir M., Nadeem M., Qureshi T.M., Qayyum A., Suhaib M., Zeb F., et al. 2018. Addition of oat enhanced the physico-chemical, nutritional and sensory qualities of date fruit based snack bars. J Food Nutr Res. 6: 271–276.

National Center for Palm and Dates (NCPD). 2018. The half-yearly report of the National Center for Palm and Dates. Hittin, Riyadh: NCPD.

Nielsen S.S. 2017. Vitamin C determination by indophenol method. In: S.S. Nielsen (Ed.) Food analysis laboratory manual. Cham, Switzerland: Springer, pp. 143-146. 10.1007/978-3-319-44127-6_15

Obode O.C., Adebayo A.H. and Li C. 2020. Gas chromatography-mass spectrometry analysis and in vitro inhibitory effects of Phoenix dactylifera l. on key enzymes implicated in hypertension. J Pharm Pharmacogn Res. 8: 475–490. 10.56499/jppres20.838_8.5.475

Odeh A. and Allaf A.W. 2017. Determination of polyphenol component fractions and integral antioxidant capacity of Syrian aniseed and fennel seed extracts using GC–MS, HPLC analysis, and photochemiluminescence assay. Chem. Pap. 71: 1731–1737. 10.1007/s11696-017-0169-9

Parn O.J., Bhat R., Yeoh T.K. and Al-Hassan A.A. 2015. Development of novel fruit bars by utilizing date paste. Food Biosci. 9: 20–27. 10.1016/j.fbio.2014.11.002

Petrović M., Kezić N. and Bolanča V. 2010. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chem. 122: 285–291. 10.1016/j.foodchem.2010.02.018

Ponzo V., Pellegrini M., Costelli P., Vázquez-Araújo L., Gayoso L., D’Eusebio C., et al. 2021. Strategies for reducing salt and sugar intakes in individuals at increased cardiometabolic risk. Nutrients. 13: 279. 10.3390/nu13010279

Ralston R., Lee J., Truby H., Palermo C. and Walker K. 2012. A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens. 26: 3–13. 10.1038/jhh.2011.3

Razali N.S.M., Wenyin B., Arjunan R.D., Hashim H. and Abdullah A. 2019. Total phenolic content and antioxidant activities of date fruit extracts. Malays Appl Biol. 48: 103–108.

Rehman W.U., Shah U., Rabi K., Munir M., Saleeem A., Iqbal A., et al. 2020. Development fiber-enriched date bars from natural resources. Fresenius Environ Bull. 29: 6126–6133.

Research and Markets. 2020. Snack bar market—forecasts from 2020 to 2025. Available at: https://www.researchandmarkets.com/tag/energy-bar. Accessed February 4, 2023

Riley T., Petersen K. and Kris-Etherton P. 2022. Health aspects of high-oleic oils. In: High oleic oils. Flider, F.J. Chapter 9. AOCS Press, pp. 201-243. 10.1016/B978-0-12-822912-5.00002-2

Saito K., Jin D.-H., Ogawa T., Muramoto K., Hatakeyama E., Yasuhara T., et al. 2003. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J Agric Food Chem. 51: 3668–3674. 10.1021/jf021191n

Samarawira I. 1983. Date palm, potential source for refined sugar. Econ Bot. 37: 181–186. 10.1007/BF02858783

Sawaya W.N., Khatchadourian H.A., Khalil J.K., Safi W.M. and Al-Shalhat A. 1982. Growth and compositional changes during the various developmental stages of some Saudi Arabian date cultivars. J Food Sci. 47: 1489–1492. 10.1111/j.1365-2621.1982.tb04967.x

Shaheen B., Nadeem M., Kauser T., Mueen-ud-Din G. and Mahmood S. 2013. Preparation and nutritional evaluation of date based fiber enriched fruit bars. Pak J Nutr. 12: 1061–1065. 10.3923/pjn.2013.1061.1065

Siddeeg A., Zeng X.-A., Ammar A.-F. and Han Z. 2019. Sugar profile, volatile compounds, composition and antioxidant activity of Sukkari date palm fruit. J. Food Sci Technol. 56: 754–762. 10.1007/s13197-018-3534-y

Siddiq M. and Greiby I. 2013. Overview of date fruit production, postharvest handling, processing, and nutrition. In: Dates: postharvest science, processing technology and health benefits (eds M. Siddiq, S.M. Aleid and A.A. Kader). Wiley Online Library. pp. 1-28. 10.1002/9781118292419

Singh V., Guizani N., Essa M., Hakkim F. and Rahman M. 2012. Comparative analysis of total phenolics, flavonoid content and antioxidant profile o different date varieties (Phoenix dactylifera l.) from Sultanate of Oman. Int Food Res J. 19: 1063-1070.

Singh T.P. and Sogi D.S. 2018. Comparative study of structural and functional characterization of bran protein concentrates from superfine, fine and coarse rice cultivars. Int J Biol Macromol. 111: 281–288. 10.1016/j.ijbiomac.2017.12.161

Song W., Kong X., Hua Y., Li X., Zhang C. and Chen Y. 2020. Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. Food Sci Technol (LWT). 118: 108724. 10.1016/j.lwt.2019.108724

Sun-Waterhouse D., Teoh A., Massarotto C., Wibisono R. and Wadhwa S. 2010. Comparative analysis of fruit-based functional snack bars. Food Chem. 119: 1369–1379. 10.1016/j.foodchem.2009.09.016

Suresh S., Guizani N., Al-Ruzeiki M., Al-Hadhrami A., Al-Dohani H., Al-Kindi I., et al. 2013. Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J Food Eng. 119: 668–679. 10.1016/j.jfoodeng.2013.06.026

Taskinen M.-R., Packard C.J. and Borén J. 2019. Dietary fructose and the metabolic syndrome. Nutrients. 11: 1987. 10.3390/nu11091987

Toh D.W.K., Koh E.S. and Kim J.E. 2020. Lowering breakfast glycemic index and glycemic load attenuates postprandial glycemic response: a systematically searched meta-analysis of randomized controlled trials. Nutrition. 71: 110634. 10.1016/j.nut.2019.110634

Vayalil P.K. 2002. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera l. Arecaceae). J Agric Food Chem. 50: 610–617. 10.1021/jf010716t

Vayalil P.K. 2012. Date fruits (Phoenix dactylifera linn): an emerging medicinal food. Crit Rev Food Sci Nutr. 52: 249–271. 10.1080/10408398.2010.499824

Velderrain-Rodríguez G., Palafox-Carlos H., Wall-Medrano A., Ayala-Zavala J., Chen C.O., Robles-Sánchez M., et al. 2014. Phenolic compounds: their journey after intake. Food Funct. 5: 189–197. 10.1039/C3FO60361J

Vijayanand P., Yadav A.R., Balasubramanyam N. and Narasimham P. 2000. Storage stability of guava fruit bar prepared using a new process. Food Sci Technol (LWT). 33: 132–137. 10.1006/fstl.1999.0627

World Health Organization (WHO). 2007. Protein and amino acid requirements in human nutrition. Geneva, Switzerland: WHO.

Yeh C.-T., Ching L.-C. and Yen G.-C. 2009. Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J Nutr Biochem. 20: 163–171. 10.1016/j.jnutbio.2008.01.005

Zhang D. and Hamauzu Y. 2004. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 88: 503–509. 10.1016/j.foodchem.2004.01.065