Emerging zoonotic viral diseases and preventive strategies with Islamic perspectives of halal foods
Main Article Content
Keywords
Halal, Zoonotic, COVID-19, Bats, Food Safety
Abstract
There are several emerging zoonotic viral diseases associated with wildlife or non-wildlife food that arise with the passage of time. Different pathogenic strains with advanced mutational changes results in severe pathogenicity in respective hosts either animals or humans. The viability in human host employs the certainty of transmission from animals. Most of the viral diseases in humans caused by direct close contact between animals or indirectly through intermediate hosts. Many of the coronaviral diseases spread by bats specie and its reservoirs. Moreover, the consumption of other wildlife animals common in certain regions of world escalate the potential risk for gaining various zoonotic viral ailments. On the other hand, the Islamic norms for food consumption remarkably reduces the risk of these diseases by devouring the Halal (lawful) or Tayyab foods. The xenobiotic transformations in animals also illustrates the prohibition of haram (unlawful) food consumption. Humans with compromised immune system in elderly or suffering from chronic diseases can easily adopt these viral diseases and thus may prone to lethality. One of the emerging zoonotic viral diseases involve COVID-19 caused by novel β-coronavirus (nCov) transmission has been suspected in Wuhan wildlife market that also have origin of bat reservoirs as natural host based on virus genome sequencing results and evolutionary analysis. Measures to prevent or reduce transmission should be especially implemented in populations at greater risk.
References
Alqudsi S.G. 2014. Awareness and demand for 100% halal supply chain meat products. Proc Social Behav Sci. 130: 167–178. 10.1016/j.sbspro.2014.04.021
Ambali A.R. and Bakar A.N. 2014. People’s awareness on halal foods and products: potential issues for policy-makers. Proc Social Behav Sci. 121(19): 3–25. 10.1016/j.sbspro.2014.01.1104
Briese T., Kapoor A., Mishra N., Jain K., Kumar A., Jabado O.J., et al. 2015. Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio. 6(5): e01491–e01415. 10.1128/mBio.01491-15
Cleaveland S, Haydon DT, Taylor L. 2007. Overviews of pathogen emergence: which pathogens emerge, when and why?. pp. 85–111. In Childs JE, Mackenzie JS, Richt JA (ed), Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission. Springer, Berlin, Germany. 10.1007/978-3-540-70962-6_5
Consortium C.S.M.E. 2004. Molecular evolution of the SARS coronavirus during the SARS epidemic in China. Science. 303(5664): 1666–1669. 10.1126/science.1092002
Daszak P., Cunningham A.A. and Hyatt A.D. 2001. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica. 78(2): 103–116. 10.1016/S0001-706X(00)00179-0
Denner J. 2014. Xenotransplantation-progress and problems: A review. Transplant Technol Res. 4:2. 10.4172/2161-0991.1000133
Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., et al. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol. 84(21): 11336–11349. 10.1128/JVI.00650-10
Fenner F. and Fantini B. 1999. Biological control of vertebrate pests: the history of myxomatosis, an experiment in evolution. CABI Publishing, Wallingford, UK. 10.1079/9780851993232.0000
Garner J., Johnson B.J., Paddock C.D., Shieh W.-J., Goldsmith C.S., Reynolds M.G., et al. 2004. Monkeypox transmission and pathogenesis in prairie dogs. Emerg Infect Dis. 10(3): 426. 10.3201/eid1003.030878
Hahn B.H., Shaw G.M., De K.M. and Sharp P.M. 2000. AIDS as a zoonosis: scientific and public health implications. Science. 287(5453): 607–614. 10.1126/science.287.5453.607
Haq I.U. 1996. Economic doctrines of Islam: a study in the doctrines of Islam and their implications for poverty, employment and economic growth (Vol. 3). International Institute of Islamic Thought (IIIT), Herndon, VA. 10.2307/j.ctvkc6759
Hubálek Z. 2003. Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses. Emerg Infect Dis. 9(3): 403. 10.3201/eid0903.020208
Hufnagel L., Brockmann D. and Geisel T. 2004. Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci. 101(42): 15124–15129. 10.1073/pnas.0308344101
Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W. and Duan G. 2020. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 12(4): 372. 10.3390/v12040372
Kennedy S. 2012. Emerging global food system risks and potential solutions. Improv Import Food Safety. 1–20. 10.1002/9781118464298.ch1
Kitchen A., Shackelton L.A. and Holmes E.C. 2011. Family-level phylogenies reveal modes of macroevolution in RNA viruses. Proc Nat Acad Sci. 108(1): 238–243. 10.1073/pnas.1011090108
Kucharski A.J., Funk S., Eggo R.M., Mallet H.-P., Edmunds W.J. and Nilles E.J. 2016. Transmission dynamics of Zika virus in island populations: a modeling analysis of the 2013–14 French Polynesia outbreak. PLoS Negl Trop Dis. 10(5): e0004726. 10.1371/journal.pntd.0004726
Kuiken T., Leighton F.A., Fouchier R.A., LeDuc J.W., Peiris J.S.M., Schudel A., et al. 2005. Pathogen surveillance in animals. Science. 309(5741): 1680–1681. 10.1126/science.1113310
Lau S.K., Fan R.Y., Luk H.K., Zhu L., Fung J., Li K.S., et al. 2018. Replication of MERS and SARS coronaviruses in bat cells offers insights into their ancestral origins. Emerg Microbes Infect. 7(1): 1–11. 10.1038/emi.2015.6 10.1038/emi.2014.69 10.1038/emi.2016.129 10.1038/s41426-018-0208-9
Lau S.K., Li K.S., Huang Y., Shek C.-T., Tse H., Wang M., et al. 2010. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol. 84(6): 2808–2819. 10.1128/JVI.02219-09
Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.-W., Wong B.H., et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Nat Acad Sci. 102(39): 14040–14045. 10.1073/pnas.0506735102
Li K., Guan Y., Wang J., Smith G., Xu K., Duan L., et al. 2004. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 430(6996): 209–213. 10.1038/nature02746
Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science. 310(5748): 676–679. 10.1126/science.1118391
Li W., Wong S.-K., Li F., Kuhn J.H., Huang I.-C., Choe H., et al. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol. 80(9): 4211–4219. 10.1128/JVI.80.9.4211-4219.2006
Lima S.L. and O’Keefe J.M. 2013. Do predators influence the behavior of bats? Biol Rev. 88(3): 626–644. 10.1111/brv.12021
Macdiarmid J.I. 2013. Is a healthy diet an environmentally sustainable diet? Proc Nutr Soc. 72(1): 13–20. 10.1017/S0029665112002893
Mackenzie J. and Field H. 2004. Emerging encephalitogenic viruses: lyssa viruses and henipa viruses transmitted by frugivorous bats. In: Emergence and control of zoonotic viral encephalitides. Springer, New York, NY, pp. 97–111. 10.1007/978-3-7091-0572-6_8
Manning L. and Soon J.M. 2014. Developing systems to control food adulteration. Food Policy. 49: 23–32. 10.1016/j.foodpol.2014.06.005
Menachery V.D., Yount B.L. Jr, Debbink K., Agnihothram S., Gralinski L.E., Plante J.A., et al. 2015. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 21(12): 1508. 10.1038/nm.3985
Menachery V.D., Yount B.L. Jr, Debbink K., Agnihothram S., Gralinski L.E., Plante J.A., et al. 2016a. Corrigendum: a SARS-like cluster of circulating bat corona viruses shows potential for human emergence. Nat Med. 22(4): 446. 10.1038/nm0416-446d
Menachery V.D., Yount B.L., Sims A.C., Debbink K., Agnihothram S.S., Gralinski L.E., et al. 2016b. SARS-like WIV1-CoV poised for human emergence. Proc Nat Acad Sci. 113(11): 3048–3053. 10.1073/pnas.1517719113
Morvan J., Nakoune E., Deubel V. and Colyn M. 2000. Ebola virus and forest ecosystem. Bull Soc Pathol Exot. 93(3): 172–175.
Moss M. 2013. Salt, sugar, fat: how the food giants hooked us. Random House, New York, NY.
Muhammad N., Maheran N., Md Isa F. and Kifli B.C. 2009. Positioning Malaysia as halal-hub: integration role of supply chain strategy and halal assurance system. Asian Soc Sci. 5(7): 44–52. 10.5539/ass.v5n7p44
Mujoriya R., Dhamande K. and Ramesh B. 2011. A review on study of swine flu. Indo Global Res J Pharm Sci. 1(2): 47–51.
Murray R.K., Granner D.K., Mayes P.A. and Rodwell V.W. 2014. Harper’s illustrated biochemistry. McGraw-Hill, New York, NY.
Nurdeng D. 2009. Lawful and unlawful foods in Islamic law focus on Islamic medical and ethical aspects. Int Food Res J. 16(4): 469–478.
Pan Y., Tian X., Qin P., Wang B., Zhao P., Yang Y.-L., et al. 2017. Discovery of a novel swine enteric alphacorona virus (SeACoV) in southern China. Vet Microbiol. 211: 15–21. 10.1016/j.vetmic.2017.09.020
Parrish C. 1993. Canine parvovirus 2: A probable example of interspecies transfer. In: Morse S.S. (Ed.) Emerging viruses. Oxford University Press, New York, NY. 10.1093/oso/9780195074444.003.0018
Petrosillo N., Viceconte G., Ergonul O., Ippolito G. and Petersen E. 2020. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 26(6): 729–734 10.1016/j.cmi.2020.03.026
Pöhlmann S., Gramberg T., Wegele A., Pyrc K., van der Hoek L., Berkhout B., et al. 2006. Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2. In: The nidoviruses. Springer, New York, NY, pp. 281–284. 10.1007/978-0-387-33012-9_47
Raj V.S., Mou H., Smits S.L., Dekkers D.H., Müller M.A., Dijkman R. et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495(7440): 251–254. 10.1038/nature12005
Schulz M. and Schmoldt A. 2003. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Die Pharmazie Int J Pharm Sci. 58(7): 447–474.
Sears M.E., Kerr K.J. and Bray R.I. 2012. Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health. 2012. 10.1155/2012/184745
Shahdan I.A., Regenstein J., Shahabuddin A. and Rahman M.T. 2016. Developing control points for halal slaughtering of poultry. Poult Sci. 95(7): 1680–1692. 10.3382/ps/pew092
Simmonds P. 2001. Reconstructing the origins of human hepatitis viruses. Philos Trans Royal Soc Lond Biol Sci. 356(1411): 1013–1026. 10.1098/rstb.2001.0890
Sonnenberg L., Gelsomin E., Levy D.E., Riis J., Barraclough S. and Thorndike A.N. 2013. A traffic light food labeling intervention increases consumer awareness of health and healthy choices at the point of purchase. Preventive Med. 57(4): 253–257. 10.1016/j.ypmed.2013.07.001
Talib H.A., Ali K.M., Jamaludin K. and Rijal K. 2008. Quality assurance in halal food manufacturing in Malaysia: a preliminary study. Paper presented at the Proceedings of International Conference on Mechanical & Manufacturing Engineering (ICME2008).
Tarighat-Esfanjani A. and Namazi N. 2016. Nutritional concepts and the frequency of foodstuffs are mentioned in the Holy Quran. J Relig Health. 55(3): 812–819. 10.1007/s10943-014-9855-x
Thorndike A.N., Riis J., Sonnenberg L.M. and Levy D.E. 2014. Traffic-light labels and choice architecture: promoting healthy food choices. Am J Prev Med. 46(2): 143–149. 10.1016/j.amepre.2013.10.002
Tuggle C.K., Wang Y. and Couture O. 2007. Advances in swine transcriptomics. Int J Biol Sci. 3(3): 132. 10.7150/ijbs.3.132
Wang N., Shi X., Jiang L., Zhang S., Wang D., Tong P., et al. 2013. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23(8): 986. 10.1038/cr.2013.92
Widagdo W., Sooksawasdi Na Ayudhya S., Hundie G.B. and Haagmans B.L. 2019. Host determinants of MERS-CoV transmission and pathogenesis. Viruses. 11(3): 280. 10.3390/v11030280
Wolfe N.D., Dunavan C.P. and Diamond J. 2007. Origins of major human infectious diseases. Nature. 447(7142): 279–283. 10.1038/nature05775
Yang Y., Du L., Liu C., Wang L., Ma C., Tang J. et al. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into the bat-to-human transmission of MERS coronavirus. Proc Nat Acad Sci. 111(34): 12516–12521. 10.1073/pnas.1405889111
Yang X.-L., Hu B., Wang B., Wang M.-N., Zhang Q., Zhang W. et al. 2016. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J Virol. 90(6): 3253–3256. 10.1128/JVI.02582-15
Yılmaz S., Ergun S., Şanver Çelik E., Yigit M. and Bayizit C. 2019. Dietary trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): II. Effect on antioxidant status, digestive enzyme, blood biochemistry, and liver antioxidant gene expression responses. Aquac Nutr. 25(6): 1207–1217. 10.1111/anu.12935
Yousofshahi M., Manteiga S., Wu C., Lee K. and Hassoun S. 2015. PROXIMAL: a method for prediction of xenobiotic metabolism. BMC Syst Biol. 9(1): 94. 10.1186/s12918-015-0241-4
Zailani S., Arrifin Z., Abd Wahid N., Othman R. and Fernando Y. 2010. Halal traceability and halal tracking systems in strengthening halal food supply chains for the food industry in Malaysia (a review). J Food Technol 8(3): 74–81. 10.3923/jftech.2010.74.81
Zaki A.M., Van Boheemen S., Bestebroer T.M., Osterhaus A.D. and Fouchier R.A. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Eng J Med. 367(19): 1814–1820. 10.1056/NEJMoa1211721
Zhao G.-P. 2007. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans Royal Soc Biol Sci. 362(1482): 1063–1081. 10.1098/rstb.2007.2034
Zulfakar M.H., Anuar M.M. and Talib M. 2014. Conceptual framework on halal food supply chain integrity enhancement. Proc Social Behav Sci. 121: 58–67. 10.1016/j.sbspro.2014.01.1108