Anthocyanin content prediction in frozen strawberry puree

Main Article Content

Laura García-Curiel
Jesús G. Pérez-Flores
Elizabeth Contreras-López
Emmanuel Pérez-Escalante
Aldahir Alberto Hernández-Hernández

Keywords

anthocyanin content, color measurement, image analysis, machine learning, strawberry puree

Abstract

Rapid color degradation during processing and storage is a limitation when using strawberry puree (SP). This work aimed to use image analysis coupled with two machine learning algorithms: ordinary least squares (OLS) and artificial neural networks (ANNs), to predict anthocyanin content (AC) in frozen SP during its storage at –18°C for 120 days. When applying the OLS regression model, unsatisfactory AC prediction values were obtained due to multicollinearity. In contrast, a good prediction of AC using ANNs model was observed by comparing AC in SP predicted by the model versus the experimentally obtained values (coefficient of determination, R2 = 0.977).

Abstract 515 | PDF Downloads 502 HTML Downloads 68 XML Downloads 74

References

Aaby K., Wrolstad R.E., Ekeberg D. and Skrede G. 2007. Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. J Agric Food Chem. 55(13): 5156–5166. 10.1021/jf070467u

Amoriello T., Ciccoritti R. and Ferrante P. 2022. Prediction of strawberries’ quality parameters using artificial neural-networks. Agronomy. 12(4):963. 10.3390/agronomy12040963

Athira K., Sooraj N.P., Jaishanker R., Saroj Kumar V., Sajeev C.R., Pillai M.S., Govind A. and Dadhwal V.K. 2019. Quantitative representation of floral colors. Color Res Appl. 44(3):426–432. 10.1002/col.22353

Barbin D.F., Mastelini S.M., Barbon S., Campos G.F.C., Barbon A.P.A.C. and Shimokomaki M. 2016. Digital image analy-ses as an alternative tool for chicken quality assessment. Biosyst Eng. 144:85–93. 10.1016/j.biosystemseng.2016.01.015

Bilgili M. and Sahin B. 2010. Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorol Atmos Phys., 109:61–72. 10.1007/s00703-010-0093-9

Buvé C., Kebede B.T., De Batselier C., Carrillo C., Pham H.T.T., Hendrickx M., Grauwet T. and Van Loey A. 2018. Kinetics of colour changes in pasteurised strawberry juice during storage. J. Food Eng. 216:42–51. 10.1016/j.jfoodeng.2017.08.002

Caner C., Aday M.S. and Demir M. 2008. Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. Eur Food Res Technol. 227(6):1575–1583. 10.1007/s00217-008-0881-3

Contreras-López E., Jaimez-Ordaz J., Ugarte-Bautista I., Ramírez-Godínez J., González-Olivares L.G., García-Curiel L. and Pérez-Flores J.G. 2022. Use of image analysis to determine the shelf-life of an apple compote with wine. Food Sci Technol. 42:e04122. 10.1590/fst.04122

Da Silva Simão R., De Moraes J.O., Lopes J.B., Frabetti A.C.C., Carciofi B.A.M. and Laurindo J.B. 2022. Survival analysis to predict how color influences the shelf life of strawberry leather. Foods. 11(2):218. 10.3390/foods11020218

Galoburda R., Boca S., Skrupskis I., Seglina D. 2014. Physical and chemical parameters of strawberry puree. 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being,” FOODBALT Conference Proceedings; Jelgava, Latvia, May 8–9, 2014, pp. 172–177.

Hernanz D., Recamales Á.F., Meléndez-Martínez A.J., González-Miret M.L. and Heredia F.J. 2008. Multivariate statistical analysis of the color–anthocyanin relationships in different soil less-grown strawberry genotypes. J Agric Food Chem. 56(8):2735–2741. 10.1021/jf073389j

Hosseinifarahi M., Jamshidi E., Amiri S., Kamyab F. and Radi M. 2020. Quality, phenolic content, antioxidant activity, and the degradation kinetic of some quality parameters in strawberry fruit coated with salicylic acid and Aloe vera gel. J Food Process Preserv. 44(9):e14647. 10.1111/jfpp.14647

Howard L.R., Brownmiller C. and Prior R.L. 2014. Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. J Berry Res. 4(2):107–116. 10.3233/JBR-140072

Kafkas E., Koşar M., Paydaş S., Kafkas S. and Başer K.H.C. 2007. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 100(3):1229–1236. 10.1016/j.foodchem.2005.12.005

Kato T., Mastelini S.M., Campos G.F.C., Da Costa Barbon A.P.A., Prudencio S.H., Shimokomaki M., Soares A.L. and Barbon S. 2019. White striping degree assessment using computer vision system and consumer acceptance test. Asian-Australasian J Anim Sci. 32(7):1015–1026. 10.5713/ajas.18.0504

Kazi M.K., Eljack F. and Mahdi E. 2021. Data-driven modeling to predict the load vs. displacement curves of targeted composite materials for industry 4.0 and smart manufacturing. Compos Struct. 258:113207. 10.1016/j.compstruct.2020.113207

Lev A., Braw Y., Elbaum T., Wagner M. and Rassovsky Y. 2022. Eye tracking during a continuous performance test: utility for assessing ADHD patients. J Atten Disord. 26(2):245–255. 10.1177/1087054720972786

Liu C., Zheng H., Sheng K., Liu W. and Zheng L. 2018. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol Technol. 139:47–55. 10.1016/j.postharvbio.2018.01.016

Lopes J.F., Ludwig L., Barbin D.F., Grossmann M.V.E. and Barbon S. 2019. Computer vision classification of barley flour based on spatial pyramid partition ensemble. Sensors (Switzerland). 19(13):2953. 10.3390/s19132953

Lukawska-Matuszewska K. and Urbański J.A. 2014. Prediction of near-bottom water salinity in the Baltic Sea using ordinary least squares and geographically weighted regression models. Estuar Coast Shelf Sci. 149:255–263. 10.1016/j.ecss.2014.09.003

Lv J., Zheng T., Song Z., Pervaiz T., Dong T., Zhang Y., Jia H. and Fang J. 2022. Strawberry proteome responses to controlled hot and cold stress partly mimic post-harvest storage temperature effects on fruit quality. Front Nutr. 8:812666. 10.3389/fnut.2021.812666

Mancini M., Mazzoni L., Gagliardi F., Balducci F., Duca D., Toscano G., Mezzetti B. and Capocasa F. 2020. Application of the non-destructive NIR technique for the evaluation of strawberry fruits quality parameters. Foods. 9(4):441. 10.3390/foods9040441

Marszałek K., Mitek M. and Skąpska S. 2015. Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food Bioprocess Technol. 8(9):1864–1876. 10.1007/s11947-015-1543-7

Mollalo A., Vahedi B. and Rivera K.M. 2020. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci Total Environ. 728:138884. 10.1016/j.scitotenv.2020.138884

Obradović V., Ergović Ravančić M., Marčetić H. and Škrabal S. 2020. Properties of strawberries puree stored in the freezer. Ital J Food Sci. 32(4):945–955. 10.14674/IJFS.1858

Oliveira M.M., Cerqueira B.V., Barbon S. and Barbin D.F. 2021. Classification of fermented cocoa beans (cut test) using computer vision. J Food Compos Anal. 97:103771. 10.1016/j.jfca.2020.103771

Oszmiański J., Wojdyło A. and Kolniak J. 2009. Effect of l-ascorbic acid, sugar, pectin and freeze-thaw treatment on polyphenol content of frozen strawberries. LWT. 42(2):581–586. 10.1016/j.lwt.2008.07.009

Palkovits S. 2020. A primer about machine learning in catalysis–a tutorial with code. Chem Cat Chem. 12(16):3995–4008. 10.1002/cctc.202000234

Pilkington J.L., Preston C. and Gomes R.L. 2014. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind Crops Prod. 58:15–24. 10.1016/j.indcrop.2014.03.016

Prihanditya H.A. and Alamsyah. 2020, Oct. The implementation of Z-score normalization and boosting techniques to increase accuracy of C4.5 algorithm in diagnosing chronic kidney disease. J Soft Comput Explor. 1(1):63–69. 10.52465/joscex.v1i1.8

Rogiers B., Mallants D., Batelaan O., Gedeon M., Huysmans M. and Dassargues A. 2012. Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks. Math Geosci. 44(6):739–763. 10.1007/s11004-012-9409-2

Santos Pereira L.F., Barbon S., Valous N.A. and Barbin D.F. 2018. Predicting the ripening of papaya fruit with digital imaging and random forests. Comput Electron Agric. 145:76–82. 10.1016/j.compag.2017.12.029

Scalisi A., O’connell M.G., Islam M.S. and Goodwin I. 2022. A fruit colour development index (CDI) to support harvest time decisions in peach and nectarine orchards. Horticulturae. 8(5):459. 10.3390/horticulturae8050459

Stan A., Stan A. and Popa M.E. 2016. Pretreatment behavior of frozen strawberries and strawberry purees for smoothie production. Sci Bull Ser F Biotechnol. 19(February):315–323.

Teribia N., Buvé C., Bonerz D., Aschoff J., Hendrickx M. and Loey A. Van. 2021. Impact of processing and storage conditions on color stability of strawberry puree: the role of PPO reactions revisited. J Food Eng. 294:110402. 10.1016/j.jfoodeng.2020.110402

Tosun E., Aydin K. and Bilgili M. 2016. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alex Eng J. 55(4):3081–3089. 10.1016/j.aej.2016.08.011

Udomkun P., Nagle M., Argyropoulos D., Wiredu A.N., Mahayothee B. and Müller J. 2017. Computer vision coupled with laser backscattering for non-destructive colour evaluation of papaya during drying. J Food Meas Charact. 11(4):2142–2150. 10.1007/s11694-017-9598-y

Ulrici A., Foca G., Ielo M.C., Volpelli L.A. and Lo Fiego D. Pietro. 2012. Automated identification and visualization of food defects using RGB imaging: application to the detection of red skin defect of raw hams. Innov Food Sci Emerg Technol. 16:417–426. 10.1016/j.ifset.2012.09.008

Valous N.A., Mendoza F., Sun D.W. and Allen P. 2009. Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Sci. 81(1):132–141. 10.1016/j.meatsci.2008.07.009

Wagle P., Xiao X., Gowda P., Basara J., Brunsell N., Steiner J. and Anup K.C. 2017. Analysis and estimation of tallgrass prairie evapotranspiration in the central United States. Agric For Meteorol. 232:35–47. 10.1016/j.agrformet.2016.08.005

Wu D. and Sun D.W. 2013. Colour measurements by computer vision for food quality control–a review. Trends Food Sci Technol. 29(1):5–20. 10.1016/j.tifs.2012.08.004

Xu S., Wang J., Shou W., Ngo T., Sadick A.M. and Wang X. 2021. Computer vision techniques in construction: a critical review. Arch Comput Methods Eng. 28(5):3383–3397. 10.1007/s11831-020-09504-3

Zhang L., Wang L., Zeng X., Chen R., Yang S. and Pan S. 2019. Comparative transcriptome analysis reveals fruit discoloration mechanisms in postharvest strawberries in response to high ambient temperature. Food Chem X. 2100025. 10.1016/j.fochx.2019.100025

Zheng H., Jiang L., Lou H., Hu Y., Kong X. and Lu H. 2011. Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values. J Agric Food Chem. 59(2):592–600. 10.1021/jf1032476