Content of selected polyphenolic substances in parts of grapevine

Main Article Content

Lenka Jurasova
Tunde Jurikova
Mojmir Baron
Jiri Sochor


grapevine, peel, polyphenolic compound, seed, skin, stem


This review provides an overview of the variety of occurrences, content, extraction and health effects of selected polyphenolic compounds associated with different parts of grapevine (seeds, peel, pulp and stems). The review provides a brief characterisation of grape parts, the content of polyphenolic compounds and their extraction together with their graphical forms of presentation and diversity as determined by different studies. The content of individual polyphenolic compounds differed with studies. Effects of different factors were evident in both growing style and geographical location of vineyards as well as extraction methods and analytical conditions.

Abstract 215 | PDF Downloads 303 HTML Downloads 83 XML Downloads 63


Abarghuei, M.J., Rouzbehan, Y. and Alipour, D. 2010. The influence of the grape pomace on the ruminal parameters of sheep. Livest Sci. 132(1–3): 73–79. 10.1016/j.livsci.2010.05.002

Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.-L. and Haroutounian, S.A. 2012. Grape stem extracts: polyphenolic content and assessment of their in vitro antioxidant properties. Food Sci Tech (LWT). 48(2): 316–322. 10.1016/j.lwt.2012.04.006

Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., et al. 2013. Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem Toxicol. 61: 60–68. 10.1016/j.fct.2013.01.029

Arvanitoyannis, I.S., Ladas, D. and Mavromatis, A. 2006. Potential uses and applications of treated wine waste: a review. Int J Food Sci Tech. 41(5): 475–487. 10.1111/j.1365-2621.2005.01111.x

Assumpção, C.F., Nunes, I.L., Mendonça, T.A., Bortolin, R.C., Jablonski, A., Flôres, S.H. et al. 2016. Bioactive compounds and stability of organic and conventional Vitis labrusca grape seed oils. J Am Oil Chem Soc. 93(1): 115–124. 10.1007/s11746-015-2742-0

Aybastier, O., Dawbaa, S. and Demir, C. 2018. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry. J Chromatogr B Anal Tech Biomed Life Sci. 1072, 328–335. 10.1016/j.jchromb.2017.11.044

Bagchi, D., Bagchi, M., Stohs, S.J., Das, D.K., Ray, S.D., Kuszynski, C.A., et al. 2000. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 148(2–3): 187–197. 10.1016/S0300-483X(00)00210-9

Baiano, A. and Terracone, C. 2012. Effects of bud load on quality of Beogradska besemena and Thompson seedless table grapes and cultivar differentiation based on chemometrics of analytical indices. J Sc Food Agri. 92(3): 645–653. 10.1002/jsfa.4625

Balu, M., Sangeetha, P., Murali, G. and Panneerselvam, C. 2006. Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res Bull. 68(6): 469–473. 10.1016/j.brainresbull.2005.10.007

Boso, S., Gago, P., Santiago, J.L., Álvarez-Acero, I. and Martínez, M.d.C. 2019. Concentration of Flavanols in red and white winemaking wastes (grape skins, seeds and bunch stems), musts, and final wines. Erwerbs Obstbau. 61(1): 75–84. 10.1007/s10341-019-00455-z

Brenes, A., Viveros, A., Chamorro, S. and Arija, I. 2016. Use of polyphenol-rich grape by-products in monogastric nutrition. a review. Anim Feed Sci Tech. 211, 1–17. 10.1016/j.anifeedsci.2015.09.016

Bucić-Kojić, A., Planinić, M., Tomas, S., Jakobek, L. and Šeruga, M. 2009. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int J Food Sci Tech. 44(12): 2394–2401. 10.1111/j.1365-2621.2008.01876.x

Butterfield, D.A., Castegna, A., Lauderback, C.M. and Drake, J. 2002. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 23(5): 655–664. 10.1016/s0197-4580(01)00340-2.

Cadot, Y., Miñana-Castelló, M.T. and Chevalier, M. 2006. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J Agric Food Chem. 54(24): 9206–9215. 10.1021/jf061326f

Cao, X. and Ito, Y. 2003. Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. J Chromatogr A. 1021(1–2): 117–124. 10.1016/j.chroma.2003.09.001

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E. and Hermosín-Gutiérrez, I. 2007. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J Agric Food Chem. 55(3): 992–1002. 10.1021/jf062800k

Castro-Lopez, L., Castillo-Sanchez, G., Díaz-Rubio, L. and Cordova-Guerrero, I. 2019. Total content of phenols and antioxidant activity of grape skins and seeds cabernet sauvignon cultivated in Valle de Guadalupe, Baja California, México. BIO Web Conf. 10.1051/bioconf/20191504001

Chafer, A., Pascual-Marti, M.C., Salvador, A. and Berna, A. 2005. Supercritical fluid extraction and HPLC determination of relevant polyphenolic compounds in grape skin. J Sep Sci. 28(16): 2050–2056. 10.1002/jssc.200500128

Chamorro, S., Goñi, I., Viveros, A., Hervert-Hernández, D. and Brenes, A. 2012. Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace. Eur Food Res Technol. 234(1): 147–155. 10.1007/s00217-011-1621-7

Chamorro, S., Viveros, A., Rebolé, A., Rica, B.D., Arija, I. and Brenes, A. 2015. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res Int. 73: 197–203. 10.1016/j.foodres.2014.11.054

Cheng, V.J., Bekhit, A.E.-D.A., McConnell, M., Mros, S. and Zhao, J. 2012. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 134(1): 474–482. 10.1016/j.foodchem.2012.02.103

Chorti, E., Kyraleou, M., Kallithraka, S., Pavlidis, M., Koundouras, S. and Kotseridis, Y. 2016. Irrigation and leaf removal effects on polyphenolic content of grapes and wines produced from cv. “Agiorgitiko” (Vitis vinifera L.). Notulae Botanicae Horti Agrobotanic Cluj-Napoca. 44(1): 133–139. 10.15835/nbha44110254

Colibaba, L.C., Cotea, V.V., Rotaru, L., Nechita, B., Niculaua, M., Tudose-Sandu-Ville, S., et al. 2015. Volatiles in Tămâioasă Românească via supercritical fluid extraction (SFE) analysis. Environ Eng Manag J (EEMJ). 14(2): 29. 10.30638/eemj.2015.029

Cook, N.C. and Samman, S. 1996. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 7(2): 66–76. 10.1016/0955-2863(95)00168-9

Cotea, V.V., Luchian, C., Niculaua, M., Zamfir, C.I., Moraru, I., Nechita, B.C., et al. 2018. Evaluation of phenolic compounds content in grape seeds. Environ Eng Manag J (EEMJ). 17(4): 795–803. 10.30638/eemj.2018.080

Crozier, A., Clifford, M.N. and Ashihara, H. 2008. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Hoboken, NJ: John Wiley.

Dabetić, N., Todorović, V., Panić, M., Radojčić Redovniković, I. and Šobajić, S. 2020. Impact of deep eutectic solvents on extraction of polyphenols from grape seeds and skin. Appl Sci. 10(14): 4830. 10.3390/app10144830

de Campos, L.M., Leimann, F.V., Pedrosa, R.C. and Ferreira, S.R. 2008. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour Technol. 99(17): 8413–8420. 10.1016/j.biortech.2008.02.058

de la Cerda-Carrasco, A., Lopez-Solis, R., Nunez-Kalasic, H., Pena-Neira, A. and Obreque-Slier, E. 2015. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J Sci Food Agric. 95(7): 1521–1527. 10.1002/jsfa.6856

Di Lecce, G., Arranz, S., Jauregui, O., Tresserra-Rimbau, A., Quifer-Rada, P. and Lamuela-Raventos, R.M. 2014. Phenolic profiling of the skin, pulp and seeds of Albarino grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 145: 874–882. 10.1016/j.foodchem.2013.08.115

Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C. and Restani, P. 2021. Polyphenols and human health: the role of bioavailability. Nutrients. 13(1): 273. 10.3390/nu13010273

Dinis, L.-T., Bernardo, S., Matos, C., Malheiro, A., Flores, R., Alves, S., et al. 2020. Overview of kaolin outcomes from vine to wine: cerceal white variety case study. Agronomy, 10(9): 1422. 10.3390/agronomy10091422

Dohadwala, M.M. and Vita, J.A. 2009. Grapes and cardiovascular disease. J Nutr. 139(9): 1788S–1793S. 10.3945/jn.109.107474

Domínguez-Perles, R., Teixeira, A., Rosa, E. and Barros, A. 2014. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chem. 164: 339–346. 10.1016/j.foodchem.2014.05.020

Downey, M.O., Harvey, J.S. and Robinson, S.P. 2003. Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine Res. 9(1): 15–27. 10.1111/j.1755-0238.2003.tb00228.x

Dwyer, K., Hosseinian, F. and Rod, M.R. 2014. The market potential of grape waste alternatives. J Food Res. 3(2): 91–106. 10.5539/jfr.v3n2p91

Eleonora, N., Dobrei, A., Alina, D., Bampidis, V. and Valeria, C. 2014. Grape pomace in sheep and dairy cows feeding. J Hortic Forestry Biotechnol. 18(2): 146–150.

Esparza, I., Cimminelli, M.J., Moler, J.A., Jimenez-Moreno, N. and Ancin-Azpilicueta, C. 2020. Stability of phenolic compounds in grape stem extracts. Antioxidants (Basel). 9(8): 720. 10.3390/antiox9080720

Esparza, I., Moler, J.A., Arteta, M., Jimenez-Moreno, N. and Ancin-Azpilicueta, C. 2021. Phenolic composition of grape stems from different Spanish varieties and vintages. Biomolecules. 11(8): 1221. 10.3390/biom11081221

Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M. and Molaie, R. 2016. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 199: 847–855. 10.1016/j.foodchem.2015.12.083

Feng, Y., Liu, Y.M., Fratkins, J.D. and LeBlanc, M.H. 2005. Grape seed extract suppresses lipid peroxidation and reduces hypoxic ischemic brain injury in neonatal rats. Brain Res Bull. 66(2): 120–127. 10.1016/j.brainresbull.2005.04.006

Fernandes, L., Casal, S., Cruz, R., Pereira, J.A. and Ramalhosa, E. 2013. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int. 50(1): 161–166. 10.1016/j.foodres.2012.09.039

Ferreira, W.M., Fraga, M. and Carabañco, R. 1996. Inclusion of grape pomace, in substitution for alfalfa hay, in diets for growing rabbits. Anim Sci. 63(1): 167–174. 10.1017/S135772980002840X

Fiesel, A., Gessner, D.K., Most, E. and Eder, K. 2014. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet Res. 10(1): 1–11. 10.1186/s12917-014-0196-5

Freitas, V.A.P.D. and Glories, Y. 1999. Concentration and compositional changes of procyanidins in grape seeds and skin of white Vitis vinifera varieties. J Sci Food Agric. 79(12): 1601–1606. 10.1002/(SICI)1097-0010(199909)79:12<1601::AID-JSFA407>3.0.CO;2-1

Garavaglia, J., Markoski, M.M., Oliveira, A. and Marcadenti, A. 2016. Grape seed oil compounds: biological and chemical actions for health. Nutr Metab Insights. 9: 59–64. 10.4137/NMI.S32910

Georgiev, V., Ananga, A. and Tsolova, V. 2014. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients. 6(1): 391–415. 10.3390/nu6010391

Gierus, M., Slama, J.A., Puntigam, R., Philipp, C., Zábranský, L., Rolinec, M., et al. 2020. The nutritional potential of grape by-products from the area of Slovakia and Austria. Emirates J Food Agric. 10.9755/ejfa.2020.v32.i1.2051

Gonzalez-Centeno, M.R., Jourdes, M., Femenia, A., Simal, S., Rossello, C. and Teissedre, P.L. 2012. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J Agric Food Chem. 60(48): 11850–11858. 10.1021/jf303047k

González-Centeno, M.R., Rosselló, C., Simal, S., Garau, M.C., López, F. and Femenia, A. 2010. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems. Food Sci Tech (LWT). 43(10): 1580–1586. 10.1016/j.lwt.2010.06.024

Gouvinhas, I., Pinto, R., Santos, R., Saavedra, M.J. and Barros, A.I. 2020. Enhanced phytochemical composition and biological activities of grape (Vitis vinifera L.) stems growing in low altitude regions. Sci Hort. 265: 109248. 10.1016/j.scienta.2020.109248

Guo, C., Yang, J., Wei, J., Li, Y., Xu, J. and Jiang, Y. 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res. 23(12): 1719–1726. 10.1016/j.nutres.2003.08.005

Hansen, M.H. and Nielsen, T.H. 2004. An Inventory of Archaic and Classical Poleis. Oxford, UK: OUP.

Hanušovský, O., Gálik, B., Bíro, D., Šimko, M., Juráček, M., Rolinec, M., et al. 2020. The nutritional potential of grape by-products from the area of Slovakia and Austria. Emirates J Food Agric. 1–10. 10.9755/ejfa.2020.v32.i1.2051

Hassanpour, H., Yousef, H., Jafar, H. and Mohammad, A. 2011. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hortic. 129(3): 459–463. 10.1016/j.scienta.2011.04.017

Iacopini, P., Baldi, M., Storchi, P. and Sebastiani, L. 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Comp Anal. 21(8): 589–598. 10.1016/j.jfca.2008.03.011

Iqbal, Z., Kamran, Z., Sultan, J.I., Ali, A., Ahmad, S., Shahzad, M. I., et al. 2015. Replacement effect of vitamin E with grape polyphenols on antioxidant status, immune, and organs histopathological responses in broilers from 1-to 35-d age. J Appl Poultry Res. 24(2): 127–134. 10.3382/japr/pfv009

Ivanova, V., Stefova, M. and Chinnici, F. 2010. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J Serbian Chem Soc. 75(1): 45–59. 10.2298/JSC1001045I

Jiménez-Moreno, N., Volpe, F., Moler, J.A., Esparza, I. and Ancín-Azpilicueta, C. 2019. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants (Basel). 8(12): 597. 10.3390/antiox8120597

Jordão, A.M., Ricardo-da-Silva, J.M. and Laureano, O. 2001. Evolution of proanthocyanidins in bunch stems during berry development (Vitis vinifera L.). J Grapevine Res (Vitis Geilweilerhof). 40(1): 17–22.

Karthikeyan, K., Bai, B.S. and Devaraj, S.N. 2007. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: an in vivo study. Life Sci. 81(23–24): 1615–1621. 10.1016/j.lfs.2007.09.033

Karvela, E., Makris, D.P., Kalogeropoulos, N. and Karathanos, V.T. 2009. Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta. 79(5): 1311–1321. 10.1016/j.talanta.2009.05.042

Kennedy, J.A., Matthews, M.A. and Waterhouse, A.L. 2000. Changes in grape seed polyphenols during fruit ripening. Phytochemistry. 55(1): 77–85. 10.1016/S0031-9422(00)00196-5

Khoshamad, R., Hassanpour, H. and Rahimi, A. 2020. Evaluation of phenolic compounds, antioxidant activities and antioxidant enzymes of wild grape peel and pulp. J Med Plants Byproduct. 9(1): 33–42.

Leal, C., Santos, R.A., Pinto, R., Queiroz, M., Rodrigues, M., Jose Saavedra, M., et al. 2020. Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J Biol Sci. 27(4): 1009–1015. 10.1016/j.sjbs.2020.02.013

Liu, L.L., He, J.H., Xie, H.B., Yang, Y.S., Li, J.C. and Zou, Y. 2014. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult Sci. 93(1): 54–62. 10.3382/ps.2013-03423

Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X., et al. 2018. Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis. 39(13): 1654–1662. 10.1002/elps.201700479

Makris, D.P., Boskou, G. and Andrikopoulos, N.K. 2007. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Comp Anal. 20(2): 125–132. 10.1016/j.jfca.2006.04.010

Manterola, H., Cerda, D., Porte, E., Machado, C., Sirhan, L. and Mohr, J. 1997. Study of the productive behavior and ruminal parameter variations in steers fed different levels of grape marc. Avances en Prod Anim (Chile).

Marshall, Donna A., Stringer, S.J. and Spiers, J.D. 2012. Stilbene, ellagic acid, flavonol, and phenolic content of muscadine grape (Vitis rotundifolia Michx.) cultivars. Pharm Crops. 3(1): 69–77. 10.2174/2210290601203010069

Martins, S., Mussatto, S.I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C.N. and Teixeira, J.A. 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv. 29(3): 365–373. 10.1016/j.biotechadv.2011.01.008

Milder, I.E., Arts, I.C., van de Putte, B., Venema, D.P. and Hollman, P.C. 2005. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr. 93(3): 393–402. 10.1079/bjn20051371

Moate, P.J., Williams, S.R., Torok, V.A., Hannah, M.C., Ribaux, B.E., Tavendale, M. H., et al. 2014. Grape marc reduces methane emissions when fed to dairy cows. J Dairy Sci. 97(8): 5073–5087. 10.3168/jds.2013-7588

Montealegre, R.R., Peces, R.R., Vozmediano, J.C., Gascueña, J.M. and Romero, E.G. 2006. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Comp Anal. 19(6–7): 687–693. 10.1016/j.jfca.2005.05.003

Moreno, D.A., Ilic, N., Poulev, A., Brasaemle, D.L., Fried, S.K. and Raskin, I. 2003. Inhibitory effects of grape seed extract on lipases. Nutrition. 19(10): 876–879. 10.1016/s0899-9007(03)00167-9

Nakamura, Y., Tsuji, S. and Tonogai, Y. 2003. Analysis of proanthocyanidins in grape seed extracts, health foods and grape seed oils. J Health Sci. 49(1): 45–54. 10.1248/jhs.49.45

Nassiri-Asl, M. and Hosseinzadeh, H. 2009. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother Res. 23(9): 1197–1204. 10.1002/ptr.2761

Nassiri-Asl, M. and Hosseinzadeh, H. 2016. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: an update. Phytother Res. 30(9): 1392–1403. 10.1002/ptr.5644

Nawaz, H., Shi, J., Mittal, G. and Kakuda, Y. 2006. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation Purification Technol. 48: 176–181. 10.1016/j.seppur.2005.07.006

Negro, C., Tommasi, L. and Miceli, A. 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol. 87(1): 41–44. 10.1016/S0960-8524(02)00202-X

Ni, Z.-J., Ma, W.-P., Wang, H., Song, C.-B., Thakur, K., Zhang, H., et al. 2017. Stability of health-promoting bioactives and enzymes in skin and pulp of grape during storage. Curr Topics Nutraceut Res : 103–110.

Nicodemus, K.K., Kolachana, B.S., Vakkalanka, R., Straub, R.E., Giegling, I., Egan, M. F., et al. 2007. Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Human Genet. 120(6): 889–906. 10.1007/s00439-006-0257-3

Nile, S.H., Kim, S.H., Ko, E.Y. and Park, S.W. 2013. Polyphenolic contents and antioxidant properties of different grape (V. vinifera, V. labrusca, and V. hybrid) cultivars. Biomed Res Int. 2013: 718065. 10.1155/2013/718065

Nollet, L.M. and Gutierrez-Uribe, J.A. 2018. Phenolic Compounds in Food: Characterization and Analysis. Boca Raton, FL: CRC Press. 10.1201/9781315120157

Novak, I., Janeiro, P., Seruga, M. and Oliveira-Brett, A.M. 2008. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Anal Chim Acta. 630(2): 107–115. 10.1016/j.aca.2008.10.002

Olas, B., Wachowicz, B., Tomczak, A., Erler, J., Stochmal, A. and Oleszek, W. 2008. Comparative anti-platelet and antioxidant properties of polyphenol-rich extracts from: berries of Aronia melanocarpa, seeds of grape and bark of Yucca schidigera in vitro. Platelets. 19(1): 70–77. 10.1080/09537100701708506

Özcan, M.M., Juhaimi, F.A., Gülcü, M., Uslu, N., Geçgel, Ü., Ghafoor, K., et al. 2017. Effect of harvest time on physico-chemical properties and bioactive compounds of pulp and seeds of grape varieties. J Food Sci Technol. 54(8): 2230–2240. 10.1007/s13197-017-2658-9

Palomino, O., Gomez-Serranillos, M., Slowing, K., Carretero, E. and Villar, A. 2000. Study of polyphenols in grape berries by reversed-phase high-performance liquid chromatography. J Chromat A, 870(1–2): 449–451. 10.1016/S0021-9673(99)01225-X

Pantelic, M.M., Dabic Zagorac, D.C., Davidovic, S.M., Todic, S.R., Beslic, Z.S., Gasic, U.M., et al. 2016. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 211: 243–252. 10.1016/j.foodchem.2016.05.051

Peña-Neira, A., Duenas, M., Duarte, A., Hernandez, T., Estrella, I. and Loyola, E. 2004. Effects of ripening stages and of plant vegetative vigor on the phenolic composition of grapes (Vitis vinifera L.) cv. Cabernet Sauvignon in the Maipo Valley (Chile). J Grapevine Res (Vitis). 43(2): 51–57.

Pietta, P.G., Simonetti, P., Gardana, C., Brusamolino, A., Morazzoni, P. and Bombardelli, E. 1998. Catechin metabolites after intake of green tea infusions. Biofactors. 8(1–2): 111–118. 10.1002/biof.5520080119

Prusova, B., Licek, J., Kumsta, M., Baron, M. and Sochor, J. 2020. Polyphenolic composition of grape stems. Notulae Botanicae Horti Agrobotan Cluj-Napoca. 48(3): 1543–1559. 10.15835/nbha48311936

Püssa, T., Floren, J., Kuldkepp, P. and Raal, A. 2006. Survey of grapevine Vitis vinifera stem polyphenols by liquid chromatography—diode array detection—tandem mass spectrometry. J Agric Food Chem. 54(20): 7488–7494. 10.1021/jf061155e

Radovanović, V., Andjelković, M., Arsić, B., Radovanović, A. and Gojković-Bukarica, L. 2019. Cost-effective ultrasonic extraction of bioactive polyphenols from vine and wine waste in Serbia. South African J Enology Viticult. 40(2): 172–180. 10.21548/40-2-3215

Ristic, R. and Iland, P.G. 2005. Relationships between seed and berry development of Vitis vinifera L. cv Shiraz: developmental changes in seed morphology and phenolic composition. Aust J Grape Wine Res. 11(1): 43–58. 10.1111/j.1755-0238.2005.tb00278.x

Rockenbach, I.I., Gonzaga, L.V., Rizelio, V.M., Gonçalves, A.E.d.S.S., Genovese, M.I. and Fett, R. 2011. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res Int. 44(4): 897–901. 10.1016/j.foodres.2011.01.049

Rusjan, D. and Mikulic-Petkovsek, M. 2017. Double maturation raisonnée: the impact of on-vine berry dehydration on the berry and wine composition of Merlot (Vitis vinifera L.). J Sci Food Agric. 97(14): 4835–4846. 10.1002/jsfa.8354

Sahpazidou, D., Geromichalos, G.D., Stagos, D., Apostolou, A., Haroutounian, S.A., Tsatsakis, A.M., et al. 2014. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol Lett. 230(2): 218–224. 10.1016/j.toxlet.2014.01.042

Sano, T., Oda, E., Yamashita, T., Naemura, A., Ijiri, Y., Yamakoshi, J., et al. 2005. Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape seed. Thromb Res. 115(1–2): 115–121. 10.1016/j.thromres.2004.07.015

Shi, J., Yu, J., Pohorly, J., Young, J.C., Bryan, M. and Wu, Y. 2003. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J Food Agric Environ. 1(2): 42–47.

Shinagawa, F.B., Santana, F.C.d., Torres, L.R.O. and Mancini-Filho, J. 2015. Grape seed oil: a potential functional food? Food Sci Technol. 35(3): 399–406. 10.1590/1678-457x.6826

Silva, V., Igrejas, G., Falco, V., Santos, T.P., Torres, C., Oliveira, A.M., et al. 2018. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control. 92: 516–522. 10.1016/j.foodcont.2018.05.031

Singha, I. and Das, S.K. 2015. Free radical scavenging properties of skin and pulp extracts of different grape cultivars in vitro and attenuation of H2O2-induced oxidative stress in liver tissue ex vivo. Indian J Clin Biochem. 30(3): 305–312. 10.1007/s12291-014-0442-4

Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V. and Moutounet, M. 2000. Phenolic composition of grape stems. J Agric Food Chem. 48(4): 1076–1080. 10.1021/jf991171u

Szabó, É., Marosvölgyi, T., Szilágyi, G., Kőrösi, L., Schmidt, J., Csepregi, K., et al. 2021. Correlations between total antioxidant capacity, polyphenol and fatty acid content of native grape seed and pomace of four different grape varieties in Hungary. Antioxidants. 10(7): 1101. 10.3390/antiox10071101

Taiz, L., Zeiger, E., Møller, I. M. and Murphy, A. 2015. Plant Physiology and Development. Oxford, UK: OUP (Sinauer Associates).

Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D.A., et al. 2014. Natural bioactive compounds from winery by-products as health promoters: a review. Int J Mol Sci. 15(9): 15638–15678. 10.3390/ijms150915638

Teixeira, N., Mateus, N., de Freitas, V. and Oliveira, J. 2018. Wine industry by-product: full polyphenolic characterization of grape stalks. Food Chem. 268: 110–117. 10.1016/j.foodchem.2018.06.070

Tomaz, I., Huzanić, N., Preiner, D., Stupić, D., Andabaka, Ž., Maletić, E., et al. 2019. Extraction Methods of polyphenol from grapes: extractions of grape polyphenols. In R.R. Watson (Ed.), Polyphenols in Plants, 2nd ed. Chap. 10 (pp. 151–167): Cambridge, MA: Academic Press. 10.1016/B978-0-12-813768-0.00010-4

Topalovic, A. and Mikulic-Petkovsek, M. 2010. Changes in sugars, organic acids and phenolics of grape berries of cultivar cardinal during ripening. J. Food Agric Environ. 8(3): 223–227.

Tortuero, F., Rioperez, J., Cosin, C., Barrera, J. and Rodriguez, M. 1994. Effects of dietary fiber sources on volatile fatty acid production, intestinal microflora and mineral balance in rabbits. Anim Feed Sci Technol. 48(1–2): 1–14. 10.1016/0377-8401(94)90107-4

Tsimogiannis, D. and Oreopoulou, V. 2019. Classification of phenolic compounds in plants. In Polyphenols in Plants (pp. 263–284): Cambridge, MA: Elsevier. 10.1016/B978-0-12-813768-0.00026-8

Vaquero, M.R., Alberto, M.R. and De Nadra, M.M. 2007. Antibacterial effect of phenolic compounds from different wines. Food Control. 18(2): 93–101. 10.1016/j.foodcont.2005.08.010

Vujasinović, V.B., Bjelica, M.M., Čorbo, S.C., Dimić, S.B. and Rabrenović, B.B. 2021. Characterization of the chemical and nutritive quality of coldpressed grape seed oils produced in the Republic of Serbia from different red and white grape varieties. Grasas y Aceites. 72(2): 1–13. 10.3989/gya.0222201

Wang, M.L., Suo, X., Gu, J.H., Zhang, W.W., Fang, Q. and Wang, X. 2008. Influence of grape seed proanthocyanidin extract in broiler chickens: effect on chicken coccidiosis and antioxidant status. Poult Sci. 87(11): 2273–2280. 10.3382/ps.2008-00077

War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., et al. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 7(10): 1306–1320. 10.4161/psb.21663

Wen, X., Zhu, M., Hu, R., Zhao, J., Chen, Z., Li, J., et al. 2016. Characterisation of seed oils from different grape cultivars grown in China. J Food Sci Technol. 53(7): 3129–3136. 10.1007/s13197-016-2286-9

Wenzel, J., Samaniego, C.S., Wang, L., Nelson, L., Ketchum, K., Ammerman, M., et al. 2015. Superheated liquid and supercritical denatured ethanol extraction of antioxidants from crimson red grape stems. Food Sci Nutr. 3(6): 569–576. 10.1002/fsn3.246

Wongnarat, C. and Srihanam, P. 2017. Phytochemical and antioxidant activity in seeds and pulp of grape cultivated in Thailand. Oriental J Chem. 33(1): 113–121. 10.13005/ojc/330112

Yan, L. and Kim, I. 2011. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian-Australasian J Anim Sci. 24(12): 1763–1770. 10.5713/ajas.2011.11189

Yilmaz, Y. and Toledo, R.T. 2004. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem. 52(2): 255–260. 10.1021/jf030117h