Assessment of the bioaccessibility of phenolic compounds and antioxidant activity in raw and pickled white cabbage and gherkins

Main Article Content

Müzeyyen Berkel Kaşıkçı
Neriman Bağdatlıoğlu

Keywords

antioxidant; bioaccessibility; cabbage; gherkin; phenolics; pickle

Abstract

White cabbage and gherkin are vegetables that are widely consumed as pickles as well as raw vegetables. In this research, we explored the effect of pickling on the bioaccessibility of phenolics and flavonoids and changes in anti-oxidant activity after in vitro digestion. In general, the pickling process enhances the bioaccessibility of phenolics and flavonoids in white cabbage and gherkin. The bioaccessibility of total phenolics (TP) in cabbages, pickled cabbages, gherkins, and pickled gherkins is determined as 125.2%, 185.1%, 369.2%, and 462%, respectively. In contrast, after in vitro digestion of raw and pickled vegetables, total antioxidant activity is reduced. So it can be concluded that both raw and pickled gherkins are good sources of bioaccessible phenolics and flavonoids. The consumption of these vegetables and their pickles is suggested to promote the reduction of diseases plagued by free radicals.

Abstract 166 | PDF Downloads 153 XML Downloads 3 HTML Downloads 12

References

Acosta-Estrada B.A., Gutiérrez-Uribe J.A., Serna-Saldívar S.O. Bound phenolics in foods, a review. Food Chem. 2014;152:46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
Bahorun T., Luximon-Ramma A., Crozier A., Aruoma O.I. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004;84:1553–1561. https://doi.org/10.1002/jsfa.1820
Bouayed J., Deußer H., Hoffmann L., Bohn T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012;131:1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
Bovy A., Vos R. Kemper M., Schijlen E., Pertejo M.A., Muir S., et al. High-Flavonol Tomatoes Resulting from the Heterologous Expression of the Maize Transcription Factor Genes. Plant Cell. 2002;14:2509–2526. https://doi.org/10.1105/tpc.004218.growth
Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Celep E., Inan Y., Akyuz S., Yesilada E. The bioaccessible phenolic profile and antioxidant potential of Hypericum perfoliatum L. after simulated human digestion. Ind. Crops Prod. 2017;109:717–723. https://doi.org/10.1016/j.indcrop.2017.09.032
Ciniviz M., Yildiz H. Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. J. Food Process. Preserv. 2020;44:1–11. https://doi.org/10.1111/jfpp.14542
Ciska E., Karamac M., Acosta-Estrada B.A., Gutiérrez-Uribe J.A., Serna-Saldívar S.O. Bound phenolics in foods, a review. Food Chem. 2014;152:46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
Cvetković B.R., Pezo L.L., Mišan A., Mastilović J., Kevrešan Ž., Ilić N., et al. The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT-Food Sci. Technol. 2019;110:332–337. https://doi.org/10.1016/j.lwt.2019.05.001
da Silva Fernandes M., Sanches Lima F., Rodrigues D., Handa C., Guelfi M., Garcia S., et al. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chem. 2017;229: 373–380. https://doi.org/10.1016/j.foodchem.2017.02.095
Del-Toro-Sánchez C.L., Rodríguez-FélixF., Cinco-Moroyoqui F.J., Juárez J., Ruiz-Cruz S., Wong-Corral F.J., et al. Recovery of phytochemical from three safflower (Carthamus tinctorius L.) by-products: A ant properties, protective effect of human erythrocytes and profile by UPLC-DAD-MS. J. Food Process. Preserv. 2021;45:1–16. https://doi.org/10.1111/jfpp.15765
Demir K., Sarıkamış G., Çakırer Seyrek G. Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chem. 2023;401:134088. https://doi.org/10.1016/j.foodchem.2022.134088
Dewanto V., Wu X., Adom K.K., Liu R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002;50:3010–3014. https://doi.org/10.1021/jf0115589
Dimitry M.Y., Edith D.M.J., Therese B.A.M., Emmanuel P.A., Armand A.B., Leopold T.N., et al. Comparative evaluation of bioactive compounds, nutritional and physicochemical properties of five Cucurbita species flours of South Cameroon. S. Afr. J. Bot. 2002;145:458–467. https://doi.org/10.1016/j.sajb.2022.03.006
Ed Nignpense B., Latif S., Francis N., Blanchard C., Santhakumar A.B. The impact of simulated gastrointestinal digestion on the bioaccessibility and antioxidant activity of purple rice phenolic compounds. Food Biosci. 2022;47:101706. https://doi.org/10.1016/j.fbio.2022.101706
Fernandes S., Lima F.S., Rodrigues D., Handa C., Guelfi M., Garcia S., et al. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chem. 2017;229: 373–380. https://doi.org/10.1016/j.foodchem.2017.02.095
Girgin N., El S.N. Effects of cooking on in vitro sinigrin bioaccessibility, total phenols, antioxidant and antimutagenic activity of cauliflower (Brassica oleraceae L. var. Botrytis). J. Food Compos. Anal. 2015;37:119–127. https://doi.org/10.1016/j.jfca.2014.04.013
Grand View Research, 2019. Packed pickles market size, share, trends analysis report by product (fruit, vegetable, meat, seafood) by packaging (jars, pouches), by distribution channel (supermarkets, hypermarkets, online) and segment forecasts, 2019-2025. https://www.grandviewresearch.com/industry-analysis/packed-pickles-market
Güleç A., Nergiz-Unal R., Akyol A., Acar J. Phenolic content and ascorbic acid are major contributors to antioxidant capacity of fruits and vegetables commonly consumed in Turkey. J. Food Agric. Environ. 2013;11:463–468.
Indexbox, 2016a. Global Cabbage Market. https://www.indexbox.io/search/cabbage-market/
Indexbox, 2016b. Global cucumber and gherkin market. https://app.indexbox.io/report/0707/0/
Indexbox, 2016c. Global imports of vegetable preparations; cucumbers and gherkins,prepared or preserved by vinegar and acetic acid. https://app.indexbox.io/report/200110/250/
Jaiswal A.K., Rajauria G., Abu-Ghannam N., Gupta S. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables. Nat Prod Commun. 2011;6:1299–1304.
Kaulmann A., André C.M., Schneider Y.J., Hoffmann L., Bohn T. Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem. 2016;197:325–332. https://doi.org/10.1016/j.foodchem.2015.10.049
Kiczorowski P., Kiczorowska B., Samolińska W., Szmigielski M., Winiarska-Mieczan A. Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Sci. 2022;12:13422. https://doi.org/10.1038/s41598-022-17782-z
Kuljarachanan T., Fu N., Chiewchan N., Devahastin S., Chen X.D. In vitro digestion using dynamic rat stomach-duodenum model as an alternative means to assess bioaccessibility of glucosinolates in dietary fiber powder from cabbage. LWT. 2021;151. https://doi.org/10.1016/j.lwt.2021.112243
Leonard, W., Zhang, P., Ying, D., Adhikari, B., Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021;107763. https://doi.org/10.1016/j.biotechadv.2021.107763
Liu H., Qiu N., Ding H., Yao R. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 2008;41:363–370. https://doi.org/10.1016/j.foodres.2007.12.012
Maribel Perez-Perez L., García-Borbón L., Iván González-Vega R., Carlos Rodríguez-Figueroa J., Carina Rosas-Burgos E., Ángel Huerta-Ocampo J., et al. Release of linked phenolic compounds in chickpea (Cicer arietinum L.) using intestinal human microbiota. Biotecnia. 2018;3:146–154.
Miceli N., Trovato A., Dugo P., Cacciola F., Donato P., Marino A., et al. Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall, from Turkey. J. Agric. Food Chem. 2009;57:6570–6577. https://doi.org/10.1021/jf9012295
Miller N.J., Rice-Evans C.A. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radic Res. 1997;26:195–199. https://doi.org/10.3109/10715769709097799
Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., et al. A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct. 2014;5:1113–1124. https://doi.org/10.1039/C3FO60702J
Mohamed G.A., Ibrahim S.R.M., El-Agamy D.S., Elsaed W.M., Sirwi A., Asfour H.Z., et al. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways. J. Ethnopharmacol. 2022;292:115223. https://doi.org/10.1016/j.jep.2022.115223
Murthy H.N., Dewir Y.H., Dalawai D., Al-Suhaibani N. Comparative physicochemical analysis of seed oils of wild cucumber (Cucumis sativus var. hardwickii (Royle) Alef.), cucumber (Cucumis sativus L. var. sativus), and gherkin (Cucumis anguria L.). S. Afr. J. Bot. 2022;145:186–191. https://doi.org/10.1016/j.sajb.2021.06.004
Omokhua-Uyi A.G., van Staden J. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review. J. Ethnopharmacol. 2020;259:112967. https://doi.org/10.1016/j.jep.2020.112967
Parada R.B., Marguet E., Campos C.A., Vallejo M. Improving the nutritional properties of Brassica L. vegetables by spontaneous fermentation. Foods Raw Mater. 2022;10:97–105. https://doi.org/10.21603/2308-4057-2022-1-97-105
Prior R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005;53(6):1841–1856. https://doi.org/10.1021/jf030723c
Rashmi H.B., Negi P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020;136:109298. https://doi.org/10.1016/j.foodres.2020.109298
Sayın F.K. Alkan S.B. The effect of pickling on total phenolic contents and antioxidant activity of 10 vegetables. J. Food Health Sci. 2015;10:135–141. https://doi.org/10.3153/JFHS15013
Singh R.P., Chidambara Murthy K.N., Jayaprakasha G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002;50:81–86. https://doi.org/10.1021/jf010865b
Song W., Derito C.M., Liu M.K., He X., Dong M., Liu R.H. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 2010;58:6621–6629. https://doi.org/10.1021/jf9035832
Statistica Research Department, 2022. U.S population: Consumption of pickles from 2011 to 2024. https://www.statista.com/statistics/283153/us-households-consumption-of-pickles-trend/
Tao Y., Han M., Gao X., Han Y., Show P.L., Liu C., et al. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrason. Sonochem. 2019;53:192–201. https://doi.org/10.1016/j.ultsonch.2019.01.003
Tapia-Hernández J.A., Rodríguez-Felix F., Juárez-Onofre J.E., Ruiz-Cruz S., Robles-García M.A., Borboa-Flores J., et al. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res. Int. 2018;111:451–471. https://doi.org/10.1016/j.foodres.2018.05.036
Thomas-Valdés S., Theoduloz C., Jiménez-Aspee F., Burgos-Edwards A., Schmeda-Hirschmann G. Changes in polyphenol composition and bioactivity of the native Chilean white strawberry (Fragaria chiloensis spp. chiloensis f. chiloensis ) after in vitro gastrointestinal digestion. Food Res. Int. 2018;105:10–18. https://doi.org/10.1016/j.foodres.2017.10.074
Ti H., Zhang R., Li Q., Wei Z., Zhang M. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015;76:813–820. https://doi.org/10.1016/j.foodres.2015.07.032
Tlais A.Z.A., Kanwal S., Filannino P., Acin Albiac M., Gobbetti M., di Cagno R. Effect of sequential or ternary starters-assisted fermentation on the phenolic and glucosinolate profiles of sauerkraut in comparison with spontaneous fermentation. Food Res. Int. 2022;156:111116. https://doi.org/10.1016/j.foodres.2022.111116
Tomas M., Beekwilder J., Hall R.D., Diez C., Sagdic O., Capanoglu E. Effect of dietary fiber ( inulin ) addition on phenolics and in vitro bioaccessibility of tomato sauce. Food Res. Int. 2018;106:129–135. https://doi.org/10.1016/j.foodres.2017.12.050
Tomas M., Zhang L., Zengin G., Rocchetti G., Capanoglu E., Lucini L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res. Int. 2021;140:110039. https://doi.org/10.1016/j.foodres.2020.110039
Vanhoutte H. Optimization and characterization of nonextractable phenolic compounds from Brassica waste streams. Master Thesis. Gent University: Belgium; 2014
Wang Y., Zhang M., Mujumdar A.S. Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT- Food Sci. Technol. 2012;47:175–182. https://doi.org/10.1016/j.lwt.2011.12.011
Yao L.H., Jiang Y.M., Shi J., Tomás-Barberán F., Datta N., Singanusong R., et al. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004;59:113–122. https://doi.org/10.1007/s11130-004-0049-7
Zhao D., Shah N.P. Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion. J. Funct. Foods. 2016;20:182–194. https://doi.org/10.1016/j.jff.2015.10.033
Zhou B., Huang W., Feng X., Liu Q., Ibrahim S.A., Liu Y. Identification and quantification of intact glucosinolates at different vegetative growth periods in Chinese cabbage cultivars by UHPLC-Q-TOF-MS. Food Chem. 2022;393:133414. https://doi.org/10.1016/j.foodchem.2022.133414