Peptide extraction from silver carp (Hypophthalmichthys molitrix) scales via enzymatic hydrolysis and membrane filtration

Main Article Content

Xiao-yan Zu
Ya-qi Huang
Ya-jing Zhao
Guang-quan Xiong
Tao Liao
Hai-lan Li

Keywords

membrane filtration, peptide extraction, response surface methodology, silver carp scales

Abstract

In this work, peptides were extracted from Silver carp (SC) scales via protease hydrolysis and separated using two membranes (M1 and M2). The results revealed that the water: SC scale ratios of 50.6 mL/g, alkaline protease 1 (AP1) dose of 2313.6 U/mL, and pH of 8.14 were the optimal hydrolysis conditions, and the peptide yield reached 88.77 ± 0.32%. The optimal conditions of peptide separation were clarified: the operating pressure of the M1 (M2) was 0.25 (0.4) MPa, the liquid temperature was 30°C, and the operation time was 65 min. In this case, the permeability of the M1 (M2) reached 91.73 ± 96% (79.83 ± 7.23%), and the average molecular weight of the peptides was 758 Da (576 Da). Compared with M1 peptides, M2 peptides contained more acidic and aromatic amino acids exhibiting free-radical scavenging and tyrosinase inhibition properties. It might provide a way to utilize SC scales as a promising material to produce bioactive peptides.

Abstract 267 | PDF Downloads 412 HTML Downloads 111 XML Downloads 79

References

Anwar, A. and Saleemuddin, M., 1998. Alkaline proteases: a review. Bioresource Technology. 64: 175–183. 10.1016/S0960-8524(97)00182-X

Atukuri, J., Odong, B.B. and Muyonga, J.H., 2019. Multi-response optimization of extrusion conditions of grain amaranth flour by response surface methodology. Food Science and Nutrition. 7: 4147–4162. 10.1002/fsn3.1284

Benítez, F.J., Acero, J.L., Leal, A.I. and González, M., 2009. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater. Journal of Hazardous Materials. 162: 1438–1445. 10.1016/j.jhazmat.2008.06.036

Cai, X.X., Chen, S.Y., Liang, J.P., Tang, M.Y. and Wang, S.Y., 2021. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food and Chemical Toxicology. 148: 111965. 10.1016/j.fct.2020.111965

Chen, J.D., Li, L., Yi, R., Xu, N., Gao, R. and Hong, B., 2016. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food Science and Technology. 66: 453–459. 10.1016/j.lwt.2015.10.070

Chen, X., Fang, F. and Wang, S.Y., 2020. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via Maillard reaction. Food and Chemical Toxicology. 137: 111115. 10.1016/j.fct.2020.111115

China Agricultural Press. China Fishery Statistical Yearbook. 2020. Beijing: Author. pp. 89–90.

Choobar, B.G., Shahmirzadi, M.A.A., Kargari, A. and Manouchehri, M., 2019. Fouling mechanism identification and analysis in microfiltration of laundry wastewater. Journal of Environmental Chemical Engineering. 7: 103030. 10.1016/j.jece.2019.103030

Davidovich-Pinhas, M., Gravelle, A.J., Barbut, S. and Marangoni, A.G., 2015. Temperature effects on the gelation of ethylcellulose oleogels. Food Hydrocolloids. 46: 76–83. 10.1016/j.foodhyd.2014.12.030

Fugère, R., Mameri, N., Gallot, J.E. and Comeau, Y., 2005. Treatment of pig farm effluents by ultrafiltration. Journal of Membrane Science. 255: 225–231. 10.1016/j.memsci.2005.01.036

Gbogouri, G.A., Linder, M., Anni, J.F. and Arementier, M.P., 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Food and Chemical Toxicology. 69: 615–622. 10.1111/j.1365-2621.2004.tb09909.x

Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E. and Montero, M.P., 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids. 25: 1813–1827. 10.1016/j.foodhyd.2011.02.007

Hernández-Ledesma, B., Contreras, M. and Recio, I., 2010. Antihypertensive peptides: production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science. 165: 23–35. 10.1016/j.cis.2010.11.001

Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D. and Mann, S., 2003. Microstructure, mechanical, and biomimetic properties of fish scales from pagrus major. Journal of Structural Biology. 142: 327–333. 10.1016/S1047-8477(03)00053-4

Ishikawa, M., Kawase, I. and Ishii, F., 2007. Combination of amino acids reduces pigmentation in B16F0 melanoma cells. Biological and Pharmaceutical Bulletin. 30: 677–681. 10.1248/bpb.30.677

Jia, J.P., Zhou, Y.G., Lu, J.Z., Chen, A.Y., Li, Y.Z. and Zheng, G.L., 2010. Enzymatic hydrolysis of Alaska pollack (Theragra chalcogramma) skin and antioxidant activity of the resulting hydrolysate. Journal of the Science of Food and Agriculture. 90: 635–640. 10.1002/jsfa.3861

Kaya, Y. and Dayanir, S., 2020. Application of nanofiltration and reverse osmosis for treatment and reuse of laundry wastewater. Journal of Environmental Health Sciences. 18: 699–709. 10.1007/s40201-020-00496-7

Kraiem, T., Hassen-Trabelsi, A.B., Naoui, S., Belayouni, H. and Jeguirim, M., 2015. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology. 138: 404–412. 10.1016/j.fuproc.2015.05.007

Lau, W.J. and Ismail, A.F., 2009. Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK. Journal of Membrane Science. 334: 30–42. 10.1016/j.memsci.2009.02.012

Liu, D.S., Liang, L., Regenstein, J.M. and Zhou, P., 2012. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry. 133: 1441–1448. 10.1016/j.foodchem.2012.02.032

Matsuo, Y., Miura, L.A., Araki, T. and Yoshie-Stark, Y., 2019. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in citrus natsudaidai peel. Food Chemistry. 279: 356–363. 10.1016/j.foodchem.2018.11.146

Nghiem, L.D., Schäfer, A.I. and Elimelech, M., 2005. Pharmaceutical retention mechanisms by nanofiltration membranes. Environmental Science and Technology. 39: 7698–705. 10.1021/es0507665

Ngo, D.H., Qian, Z.J., Ryu, B.M., Park, J.W. and Kim, S.K., 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods. 2: 107–117. 10.1016/j.jff.2010.02.001

Okuda, M., Takeguchi, M., Tagaya, M., Tonegawa, T., Hashimoto, A., Hanagata, N. and Ikoma, T., 2009. Elemental distribution analysis of type I collagen fibrils in tilapia fish scale with energy--filtered transmission electron microscope. Micron. 40: 665–668. 10.1016/j.micron.2009.04.001

Puri, S., Beg, Q.K., and Gupta, R., 2002. Optimization of alkaline protease production from Bacillusm sp. by response surface methodology. Current Microbiology. 44: 286–290. 10.1007/s00284-001-0006-8

Schurink, M., van Berkel, W.J.H., Wichers, H.J. and Boeriu, C.G., 2007. Novel peptides with tyrosinase inhibitory activity. Peptides. 28: 485–495. 10.1016/j.peptides.2006.11.023

Sierra, L.D., Fan, H.B., Zapata, J. and Wu, J.P., 2021. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT-Food Science and Technology. 146: 111631. 10.1016/j.lwt.2021.111631

Udenigwe, C.C. and Aluko R.E., 2011. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences. 12: 3148–3161. 10.3390/ijms12053148

Wu, X.S., Cai, L.Y., Zhang, Y.H. and Mi, H.B., 2015. Compositions and antioxidant properties of protein hydrolysates from the skins of four carp species. International Journal of Food Science and Technology. 50: 2589–2597. 10.1111/ijfs.12927

Xu, J.M., Zhang, T., Zhang, Y.Y., Yang, L.L., Nie, Y.H., Tao, N.P., Wang, X.C. and Zhong, J., 2021. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. International Journal of Biological Macromolecules. 186: 145–154. 10.1016/J.IJBIOMAC.2021.07.043

Zhang, L., Shi, C.W., Xiao, K.J., Li, C.H., Mo, J.Q., Zhang, Z. and Shi, Y.Y., 2019. Improvement and application of biuret method for determination of collagen peptide from tilapia. Food Science. 40: 234–240. 10.7506/spkx1002-6630-20181118-206