Goldenberry (Physalis peruviana L.) seed oil: press extraction, optimization, characterization, and oxidative stability

Main Article Content

Pedro P. Ugarte-Espinoza
Victor Delgado-Soriano
Lorenzo Estivi
Alyssa Hidalgo
Gloria Pascual-Chagman


cape gooseberry, expeller, oil recovery, oxidation kinetics, Rancimat, shelf life


In order to optimize the screw-press extraction conditions of oil from goldenberry (Physalis peruviana L.) seeds obtained from nectar processing waste, a face centered design was applied. The oil was extracted at different temperatures (60, 80, and 100°C) and seed moisture contents (8, 10, and 12%). Oil recovery (OR) increased and residual oil in the cake decreased significantly as moisture content and temperature were reduced; oil moisture and volatile matter as well as acid value, K232, K268, and p-anisidine, respectively, decreased proportionally with the moisture extraction. Thus, the highest OR (86.4%) and the best quality were obtained at 8% moisture content and 60°C pressing temperature. Under these conditions, the extracted oil presented high linoleic acid (76.0%), iodine value (140.0 mg I2/g), and refractive index (1.4769). The oil stability index, measured by Rancimat, varied from 3.65 h (120°C) to 14.87 h (100°C); the predicted shelf life at 25°C was 120.4 days and the activation energy was 85.6 kJ/mol. The results highlighted that screw-pressing of goldenberry seeds provides quality oil without employing polluting and hazardous solvents.

Abstract 857 | PDF Downloads 596 HTML Downloads 484 XML Downloads 64


Aktar, T. and Adal, E., 2019. Determining the Arrhenius kinetics of avocado oil: oxidative stability under Rancimat test conditions. Foods 8: 236. 10.3390/foods8070236

Anwar, F., Bhanger, M.I., Nasir, M.K.A. and Ismail, S., 2002. Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. Journal of Agricultural and Food Chemistry 50: 4210–4214. 10.1021/jf0114132

AOAC International, 2016. Official methods of analysis of AOAC International. 20th ed. AOAC International, Rockville, MD.

AOCS-American Oil Chemists’ Society, 1998. Official methods and recommended practices of the AOCS. 5th ed. AOCS Press, IL.

Aslanov, S.M., Mamedova, M.E. and Bairamova, S.A., 1995. Oil from the fruit and seeds of Physalis peruviana. Chemistry of Natural Compounds 31: 410–411. 10.1007/BF01165216

Brockman, H.L., 2013. Lipases. In: Lennarz, W.J. and Lane, M.D. (eds.) Encyclopedia of biological chemistry. Vol. II. Academic Press, London, pp. 729–732.

Chasquibol Silva, N. and Yácono Llanos, J.C., 2015. Composición fitoquímica del aceite de las semillas del fruto del “Aguaymanto”, Physalis peruviana L. Revista de la Sociedad Química del Perú 81: 311–318. 10.37761/RSQP.V81I4.36

Codex Alimentarius, 1999a. Codex standard for edible fats and oils not covered by individual standards (CODEX STAN 19-1981, Rev. 2–1999). Available at:

Codex Alimentarius, 1999b. Codex standard for named vegetable oils (CODEX-STAN 210–1999). Available at:

Deli, S., Farah Masturah, M., Tajul Aris, Y. and Wan Nadiah, W.A., 2011. The effects of parameters of the screw press oil expeller on oil yield from Nigella sativa L seeds. International Food Research Journal 18: 1367–1373.

Dini, A., Farrokhi, H., Sedaghat, N., Bagheri, M. and Mohammadkhani, N., 2016. Evaluation of oxidative stability and shelf-life prediction of pistachio oil using Rancimat. Journal of Rafsanjan University of Medical Sciences 15: 399–412.

Embaby, H.E., Miyakawa, T., Hachimura, S., Muramatsu, T., Nara, M. and Tanokura, M., 2022. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chemistry 366: 130645. 10.1016/j.foodchem.2021.130645

Etzbach, L., Pfeiffer, A., Weber, F. and Schieber, A., 2018. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry 245: 508–517. 10.1016/j.foodchem.2017.10.120

Farhoosh, R., 2007. Shelf-life prediction of edible fats and oils using Rancimat. Lipid Technology 19: 232–234. 10.1002/lite.200700073

Farhoosh, R., Niazmand, R., Rezaei, M. and Sarabi, M., 2008. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. European Journal of Lipid Science and Technology 110: 587–592. 10.1002/ejlt.200800004

Frankel, E.N., 2012. Lipid oxidation. 2nd ed. Woodhead Publishing Limited, Philadelphia, PA.

Gunstone, F.D., 2004. The chemistry of oils and fats: sources, composition, properties and uses. Blackwell Publishing, CRC Press, Oxford.

Gülmez, Ö. and Şahin, S., 2019. Evaluation of oxidative stability in hazelnut oil treated with several antioxidants: kinetics and thermodynamics studies. LWT-Food Science and Technology 111: 478–483. 10.1016/j.lwt.2019.05.077

Gupta, M.K., 2002. Sunflower oil. In: F.D. Gunstone (ed.) Vegetable oils in food technology: composition, properties and uses. Blackwell Publishing, Oxford, pp. 128–156.

Heidarpour, M. and Farhoosh, R., 2018. A preliminary Rancimat based kinetic approach of detecting olive oil adulteration. LWT–Food Science and Technology 90: 77–82. 10.1016/j.lwt.2017.12.015

ISO (International Organization for Standardization), 2011. ISO 3656:2011. Animal and vegetable fats and oils–determination of ultraviolet absorbance expressed as specific UV extinction. International Organization for Standardization. Geneva, Switzerland.

IUPAC (International Union of Pure and Applied Chemistry), 1987. IUPAC standard methods 2.302. Standard methods for the analysis of oils, fats and derivates. Blackwell Scientific, Oxford.

Ixtaina, V.Y., Martínez, M.L., Spotorno, V., Mateo, C.M., Maestri, D.M., Diehl, B.W.K., Nolasco, S.M. and Tomás, M.C., 2011. Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis 24: 166–174. 10.1016/j.jfca.2010.08.006

Kochhar, P. and Henry, C.J.K., 2009. Oxidative stability and shelf-life evaluation of selected culinary oils. International Journal of Food Sciences and Nutrition 60(S7): 289–296. 10.1080/09637480903103774

Ling, B., Yang, X., Li, R. and Wang, S., 2016. Physicochemical properties, volatile compounds, and oxidative stability of cold pressed kernel oils from raw and roasted pistachio (Pistacia vera L. Var Kerman). European Journal of Lipid Science and Technology 118: 1368–1379. 10.1002/ejlt.201500336

Marangoni, F., Agostoni, C., Borghi, C., Catapano, A.L., Cena, H., Ghiselli, A., La Vecchia, C., Lercker, G., Manzato, E., Pirillo, A., Riccardi, G., Risé, P., Visioli, F. and Poli, A., 2020. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292: 90–98. 10.1016/j.atherosclerosis.2019.11.018

Martínez, M.L., Bordón, M.G., Lallanas, R.L., Ribotta, P.D. and Maestri, D.M., 2017. Optimization of sesame oil extraction by screw-pressing at low temperature. Food and Bioprocess Technology 10: 1113–1121. 10.1007/s11947-017-1885-4

Matthäus, B., 2010. Oxidation of edible oils. In: E.A Decker, R.J. Elias and D.J. McClements (eds.) Oxidation in foods and beverages and antioxidant applications. Vol. II. Woodhead Publishing Limited, Cambridge, p. 528.

Mokhtar, S.M., Swailam, H.M. and Embaby, H.E.-S., 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: composition of goldenberry juice waste. Food Chemistry 248: 1–7. 10.1016/j.foodchem.2017.11.117

Mridula, D., Barnwal, P. and Singh, K.K., 2015. Screw pressing performance of whole and dehulled flaxseed and some physico-chemical characteristics of flaxseed oil. Journal of Food Science and Technology 52: 1498–1506. 10.1007/s13197-013-1132-6

Mridula, D., Saha, D., Gupta, R.K. and Bhadwal, S., 2019. Oil expelling of dehulled sunflower: optimization of screw pressing parameters. Journal of Food Processing and Preservation 43: e13852. 10.1111/jfpp.13852

Mwaurah, P.W., Kumar, S., Kumar, N., Attkan, A.K., Panghal, A., Singh, V.K. and Garg, M.K., 2020. Novel oil extraction technologies: process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety 19: 3–20. 10.1111/1541-4337.12507

Nocetti, D., Núñez, H., Puente, L., Espinosa, A. and Romero, F., 2020. Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture 100: 4335–4346. 10.1002/jsfa.10386

Popova, V., Petkova, Z., Ivanova, T., Stoyanova, M., Mazova, N. and Stoyanova, A., 2021. Lipid composition of different parts of cape gooseberry (Physalis peruviana L.) fruit and valorization of seed and peel waste. Grasas y Aceites 72(2): e402. 10.3989/gya.1256192

Popova, V., Petkova, Z, Ivanova, T., Stoyanova, M., Panayotov, N., Mazova, N. and Stoyanova, A., 2020. Determination of the chemical composition of seeds, peels, and seedcakes from two genotypes of cape gooseberry (Physalis peruviana L.). Turkish Journal of Agriculture and Forestry 44: 642–650. 10.3906/tar-2003-66

Ramadan, M.F., 2020. Bioactive phytochemicals of cape gooseberry (Physalis peruviana L.). In: H.N. Murthy and V.A. Bapat (eds.) Bioactive compounds in underutilized fruits and nuts. Springer Nature, p. 665.

Ramadan, M.F. and Moersel, J.T., 2009. Oil extractability from enzymatically treated goldenberry (Physalis peruviana L.) pomace: range of operational variables. International Journal of Food Science & Technology 44: 435–444. 10.1111/j.1365-2621.2006.01511.x

Ramadan, M.F. and Moersel, J.T., 2003. Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry 51: 969–974. 10.1021/jf020778z

Ramadan, M.F., Sitohy, M.Z. and Moersel, J.T., 2008. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: impact of processing on composition and quality of oil and meal. European Food Research and Technology 226: 1445–1458. 10.1007/s00217-007-0676-y

Ratusz, K., Popis, E., Ciemniewska-Żytkiewicz, H. and Wroniak, M., 2016. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. Journal of Thermal Analysis and Calorimetry 126: 343–351. 10.1007/s10973-016-5642-0

Raziq, S., Anwar, F., Mahmood, Z., Shahidi, S.A. and Nadeem, R., 2012. Characterization of seed oils from different varietes of watermelon [Citrullus lanatus (Thunb.)] from Pakistan. Grasas y Aceites 63: 365–372. 10.3989/gya.022212

Rodríguez, G., Squeo, G., Estivi, L., Quezada Berru, S., Buleje, D., Caponio, F., Brandolini, A. and Hidalgo, A., 2021. Changes in stability, tocopherols, fatty acids and antioxidant capacity of sacha inchi (Plukenetia volubilis) oil during French fries deep-frying. Food Chemistry 340: 127942. 10.1016/j.foodchem.2020.127942

Rodríguez, G., Villanueva, E., Cortez, D., Sanchez, E., Aguirre, E. and Hidalgo, A., 2020. Oxidative stability of chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oil blends. Journal of the American Oil Chemists’ Society 97: 729–735. 10.1002/aocs.12357

Rodríguez, G., Villanueva, E., Glorio, P. and Baquerizo, M., 2015. Estabilidad oxidativa y estimación de la vida útil del aceite de sacha inchi (Plukenetia volubilis L.). Scientia Agropecuaria 6: 155–163. 10.17268/sci.agropecu.2015.03.02

Savoire, R., Lanoisellé, J.L. and Vorobiev, E., 2012. Mechanical continuous oil expression from oilseeds: a review. Food and Bioprocess Technology 6: 1–16. 10.1007/s11947-012-0947-x

Shadyro, O.I., Sosnovskaya, A.A. and Edimecheva, I.P., 2017. Flaxseed oil stabilization using natural and synthetic antioxidants. European Journal of Lipid Science and Technology 119: 1700029. 10.1002/ejlt.201700079

Silvia, D., Farah Masturah, M., Tajul Aris, Y., Wan Nadiah, W.A. and Bhat, R., 2012. The effects of different extraction temperatures of the screw press on proximate compositions, amino acid contents and mineral contents of Nigella sativa meal. American Journal of Food Technology 7: 180–191. 10.3923/ajft.2012.180.191

Singh, K.K., Wiesenborn, D.P., Tostenson, K. and Kangas, N., 2002. Influence of moisture content and cooking on screw pressing of crambe seed. Journal of the American Oil Chemists’ Society 79: 165–170. 10.1007/s11746-002-0452-3

Singh, J. and Bargale, P.C., 2000. Development of a small capacity double stage compression screw press for oil expression. Journal of Food Engineering 43: 75–82. 10.1016/S0260-8774(99)00134-X

Spatari, C., De Luca, M., Ioele, G. and Ragno, G., 2017. A critical evaluation of the analytical techniques in the photodegradation monitoring of edible oils. LWT-Food Science and Technology 76: 147–155. 10.1016/j.lwt.2016.10.055

Symoniuk, E., Ratusz, K. and Krygier, K., 2016. Comparison of the oxidative stability of linseed (Linum usitatissimum L.) oil by pressure differential scanning calorimetry and Rancimat measurements. Journal of Food Science and Technology 53: 3986–3995. 10.1007/s13197-016-2398-2

Symoniuk, E., Ratusz, K. and Krygier, K., 2017. Comparison of the oxidative stability of cold-pressed rapeseed oil using pressure differential scanning calorimetry and Rancimat methods. European Journal of Lipid Science and Technology 119: 1600182. 10.1002/ejlt.201600182

Varas Condori, M., Pascual Chagman, G., Barriga Sanchez, M.E., Villegas Vilchez, L.F., Ursetta, S., Guevara, A. and Hidalgo, A., 2020. Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chemistry 302: 125327. 10.1016/j.foodchem.2019.125327

Vásquez-Parra, J.E., Ochoa-Martínez, C.I. and Bustos-Parra, M., 2013. Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering 119: 648–654. 10.1016/j.jfoodeng.2013.06.037

Villanueva, E., Rodríguez, G., Aguirre, E. and Castro, V., 2017. Influencia de antioxidantes en la estabilidad oxidativa del aceite de chía (Salvia hispanica L.) por Rancimat. Scientia Agropecuaria 8: 19–27. 10.17268/sci.agropecu.2017.01.02

Vujasinovic, V., Djilas, S., Dimic, E., Romanic, R. and Takaci, A., 2010. Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. Journal of the American Oil Chemists’ Society 87: 1497–1505. 10.1007/s11746-010-1630-x