Circular economy in the brewing chain

Main Article Content

Alessio Cimini
Mauro Moresi


beer chain, beer packaging formats, brewer’s spent grain, brewer’s spent yeast, carbon footprint, environmental impact, hot trub, post-consumer packaging waste, disposal methods, spent hops


The main aim of this review was to check for the applicability of the concept of circular economy to brewing chain. By analyzing the beer brewing process, it was possible to identify the main brewery wastes formed and packaging materials used as well as their range of composition and yields. In order to reduce the contribution of packaging material to the carbon footprint of beer, it would be necessary to replace one-way containers used nowadays with lighter, reusable, or recycled ones. Even if the contribution of beer consumption phase was taken into account, there was no definitive solution about the less environmentally impacting beer packaging format. The direct management of polyethylene terephthalate (PET) packaging for liquid foodstuffs could make available 100% recycled PET flakes to be reconverted into food-grade bottles with minimum downcycling to other non-food usage. The countless potential uses of brewery wastes in nutritional and biotechnological fields were tested in laboratory by disregarding any cost–benefit or market analysis. This was mainly because the estimated market price of dried brewer’s spent grain (BSG) resulted to be about 450% higher than that of conventional lignocellulose residues. All the alternative uses hailed in the literature appeared to be more useful for publishing articles than for defining any economically feasible reusing procedure for all brewery wastes. Owing to their high moisture content, such wastes are so perishable as to prevent their safe usage in the human food chain. Currently, their use as-is in animal feeding is the disposal method not only economically feasible but also able to reduce the greenhouse gas load of beer packed in glass bottles (GB) by about one-third of that associated with packaging materials. Not by chance, it is practiced by most industrial and craft breweries.

Abstract 1334 | PDF Downloads 988 HTML Downloads 1707 XML Downloads 112


AFP. 2014. Bruges to build beer pipeline to stop traffic ruining locals' lives. The Telegraph, 24 Sep. 2014. Available at: (accessed 12 Sep 2021).

Alijošius S., Švirmickas G.J., Kliševičiūtė V., Gružauskas R., Šašytė V., Racevičiūtė-Stupelienė A., Daukšienė A., and Dailidavičienė J. 2016. The chemical composition of different barley varieties grown in Lithuania. Veterinarija Ir Zootechnika (Vet Med Zoot). 73(95): 9–12.

Aliyu S. and Bala M. 2011. Brewer’s spent grain: a review of its potentials and applications. Afr J Biotechnol. 10(3): 324–331. 10.5897/AJB11.2761

Almendinger M., Rohn S., and Pleissner D. 2020. Malt and beer-related by-products as potential antioxidant skin-lightening agents for cosmetics. Sustain Chem Pharm. 17: 100282. 10.1016/j.scp.2020.100282.

Alonso-Riaño P., Sanz M.T., Benito-Román O., Beltrán S., and Trigueros E. 2021. Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer’s spent grain. Food Chem. 351: 129264. 10.1016/j.foodchem.2021.129264

Amienyo D. and Azapagic A. 2016. Life cycle environmental impacts and costs of beer production and consumption in the UK. Int J Life Cycle Assess. 21(4): 492–509. 10.1007/s11367-016-1028-6

Amienyo D., Gujba H., Stichnothe H., and Azapagic A. 2013. Life cycle environmental impacts of carbonated soft drinks. Int J Life Cycle Assess. 18: 77–79. 10.1007/s11367-012-0459-y

Anon. 2017. Reusable packaging in Europe: boosting business and closing the loop. Conference-Book of 6th European Reuse-Conference, Brussels, 23 March 2017. Available at: (accessed 12 Sep. 2021).

Assandri D., Pampuro N., Zara G., Cavallo E., and Budroni M. 2021. Suitability of composting process for the disposal and valorization of brewer’s spent grain. Agriculture. 11(1): 2. 10.3390/agriculture11010002

Associazione dei Birrai e dei Maltatori (Assobirra). 2020. Annual report 2020. Assobirra, Rome, Italy. Available at: (accessed 05 Aug 2021).

Barchet R. 2019. Hot trub: formation and removal. Available at: (accessed 12 Aug 2021).

Becker A. 2014. Siemens technology controls the beer pipeline in the Hacker Festival Tent. Siemens AG München, Germany. Available at: (accessed 12 Sep 2021).

Bedini S., Flamini G., Girardi J., Cosci F., and Conti B. 2015. Not just for beer: evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J. Pest Sci. 88: 583–592. 10.1007/s10340-015-0647-1

Beloborodko A., Žogla L., and Rošã M. 2014. Efficient use of energy in small size brewery. In: 17th European Roundtable on Sustainable Consumption and Production: book of abstracts, Slovenia, Portorož, Oct 14–16, p. 151. Available at: (accessed 12 Aug 2021).

Beverage Industry Environmental Roundtable (BIER). 2012. Research on the carbon footprint of beer. Beverage Industry Environmental Roundtable, June 2012. Available at: (accessed 07 Sep 2021).

Bocconi University, Ellen MacArthur Foundation, Intesa Sanpaolo. 2021. The circular economy as a de-risking strategy and driver of superior risk-adjusted returns. Available at: (accessed 14 Aug 2021).

Bonnely S., Peyrat-Maillard M.N., Rondini L., Masy D., and Berset C. 2000. Antioxidant activity of malt rootlet extracts. J. Agric. Food Chem. 48: 2785–2792. 10.1021/jf990793c

Bougrier C., Dognin D., Laroche C., Gonzalez V., Benali-Raclot D., and Cacho Rivero J.A. 2018. Anaerobic digestion of brewery spent grains: trace elements addition requirement. Bioresour Technol. 247: 1193–1196. 10.1016/j.biortech.2017.08.211

Brányik T., Vicente A.A., Cruz J.M.M., and Teixeira J.A. 2001. Spent grains—a new support for brewing yeast immobilisation. Biotechnol. Lett. 23: 1073–1078. 10.1023/A:1010558407475

Buffington J. 2014. The economic potential of brewer’s spent grain (BSG) as a biomass feedstock. Adv Chem Eng Sci. 4: 308–318. 10.4236/aces.2014.43034

Buttrick P. 2010. Choices, choices. Beer processing and filtration. Brew Dist Int. 6(2): 10–16.

Cappa C. and Alamprese C. 2017. Brewer's spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. Food Sci Technol (LWT) 82: 464–470. 10.1016/j.lwt.2017.04.068

Champagne C.P., Gaudreau H., and Conway J. 2003. Effect of the production or use of mixtures of bakers or brewers’ yeast extracts on their ability to promote growth of Lactobacilli and Pediococci. Electron J Biotechnol. 6: 185–197. 10.2225/vol6-issue3-fulltext-3

Chan K.Y., Van Zwieten L., Meszaros I., Downie A., and Joseph S. 2007. Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res. 45: 629–634. 10.1071/SR07109

Cheryan M. 1998. Ultrafiltration and Microfiltration Handbook. Technomic, Lancaster, PA, USA.

Chiş M.S., Pop A., Paucean A., Socaci S.A., Alexa E., Man S.M., Bota M., and Muste S. 2020. Fatty acids, volatile and sensory profile of multigrain biscuits enriched with spent malt rootles. Molecules. 25: 442. 10.3390/molecules25030442

Choi M.-S., Choi Y.-S., Kim H.-W., Hwang K.-E., Song D.-H., n Lee S.-Y., and Kim C.-J. 2014. Effects of replacing pork back fat with brewer's spent grain dietary fiber on quality characteristics of reduced-fat chicken sausages. Korean J Food Sci Ann. 34(2): 158–165. 10.5851/kosfa.2014.34.2.158

Cimini A. and Moresi M. 2014. Beer clarification using ceramic tubular membranes. Food Bioproc Technol. 7(9): 2694–2710. 10.1007/s11947-014-1338-2.

Cimini A., and Moresi M. 2015. Novel cold sterilization and stabilization process applied to a pale lager. J. Food Eng., 145: 1-9. 10.1016/j.jfoodeng.2014.08.002

Cimini A. and Moresi M. 2016. Carbon footprint of a pale lager packed in different formats: assessment and sensitivity analysis based on transparent data. J. Clean. Prod. 112: 4196–4213. 10.1016/j.jclepro.2015.06.063

Cimini A. and Moresi M. 2018a. Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer. Food Sci Technol (LWT). 90: 132–137. 10.1016/j.lwt.2017.12.008

Cimini A. and Moresi M. 2018b. Towards a Kieselguhr-and PVPP-free clarification and stabilization process of rough beer at room-temperature conditions. J Food Sci. 83(1): 129–137. 10.1111/1750-3841.13989

Cimini A. and Moresi M. 2018c. Effect of brewery size on the main process parameters and cradle-to-grave carbon footprint of lager beer. J. Ind. Ecol. 22(5): 1139–1155. 10.1111/jiec.12642

Cimini A. and Moresi M. 2020. Innovative rough beer conditioning process free from diatomaceous earth and polyvinyl polypyrrolidone. Foods. 9(1228): 1–13. 10.3390/foods9091228

Climate Conservancy. 2008. The carbon footprint of Fat Tire® Amber Ale. Available at: (accessed 10 Aug 21).

Coelho E., Rocha M.A.M., Saraiva J.A., and Coimbra M.A. 2014. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr Polym. 99: 415–422. 10.1016/j.carbpol.2013.09.003

Cook D. 2011. Brewers’ grains: opportunities abound. Brew Guard. 140(6): 60–63.

Cooray S.T., Lee J.J.L., and Chen W.N. 2017. Evaluation of brewers' spent grain as a novel media for yeast growth. AMB Express. 7: 1–10. 10.1186/s13568-016-0313-x

Crawshaw R. 2004. Co-product feeds: animal feeds from the food and drinks industries. Nottingham University Press, Nottingham, UK.

Crescenzi A.M. 1987. Factors governing the milling of malt. J Inst Brew. 93: 193–201.

De León-González G., González-Valdez J., Mayolo-Deloisa K., and Rito-Palomares M. 2016. Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous two-phase systems. Biotechnol Appl Biochem. 63: 886–894. 10.1002/bab.1435

Dessalew G., Beyene A., Nebiyu A., and Ruelle M.L. 2017. Use of industrial diatomite wastes from beer production to improve soil fertility and cereal yields. J Clean Prod. 157: 22–29. 10.1016/j.jclepro.2017.04.116

Deutsche Welle (DW). n.d. Plastic bottle recycling champion: Norway or Germany? Available at: (accessed 07 Sep 2021).

Du L., Arauzo, P.J., Meza Zavala M.F., Cao Z., Olszewski M.P., and Kruse A. 2020. Towards the properties of different biomass-derived proteins via various extraction methods. Molecules. 25: 488. 10.3390/molecules25030488

Dudek M., Świechowski K., Manczarski P., Koziel J.A., and Białowiec A. 2019. The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers’ spent grain. Energies. 12: 1518. 10.3390/en12081518

Eßlinger H.M. 2009. Handbook of brewing and beer processes-technology-markets, 1st ed. Wiley-VCH Verlag GmbH, Weinheim, Germany.

Environmental Product Declaration® (EPD). 2011a. EPD® Tuborg® beer. Reg. No. S-P-00311. (accessed 09 Sep 2021).

Environmental Product Declaration® (EPD). 2011b. EPD® BAP Bock chiara® and BAP Bock rossa® beer. Reg. No. S-P-00314. Available at: (accessed 09 Sep 2021).

Environmental Product Declaration® (EPD). 2014a. EPD® Birrificio Angelo Poretti 5 luppoli bock chiara® and Birrificio Angelo Poretti 6 luppoli bock rossa® beer. Reg. No. S-P-00314. Available at: (accessed 13 Sep 2021).

Environmental Product Declaration® (EPD). 2014b. EPD® Kronenbourg 1664® beer. Reg. No. S-P-00533. Available at: (accessed 09 Sep 2021).

Environmental Product Declaration® (EPD). 2019. Beer made from malt. UN CPC 24310 2011:21 version 2.11. The International EPD® System. Available at: (accessed 12 Sep 2021).

European Union (EU). 2005. EU regulation No. 183/2005 of the European Parliament and the Council of 12 January 2005 laying down requirements for feed hygiene. Available at: (accessed 27 Aug 2021).

European Union (EU). 2008. Directive 2008/98/EC of the European Parliament and the Council of 19 November 2008 on waste and repealing certain directives. Off J Eur Union. L 312: 3–30. Available at: (accessed 14 Aug 2021).

European Union (EU). 2018. Directive 2018/852/EU of the European Parliament and the Council of 30 May 2018 on packaging and packaging waste. Off J Eur Union. L 150: 141. Available at: (accessed 05 Sep 2021).

EverGrain. 2021. Sustainable brewing may provide a model for a circular economy. Available at: (accessed 26 Aug 2021).

Femi-ola T.O. and Atere V.A. 2013. Citric acid production from brewers spent grain by Aspergillus niger and Saccharomyces cerevisiae. Int J Res Biosci. 2: 30–37. Available at: (accessed 11 Dec 2021).

Ferraz E., Coroado J., Gamelas J., Silva J., Rocha F., and Velosa A. 2013. Spent brewery grains for improvement of thermal insulation of ceramic bricks. J Mater Civ Eng. 25: 1638–1646. 10.1061/(ASCE)MT.1943-5533.0000729

Ferraz E., Coroado J., Silva J., Gomes C., and Rocha F. 2011. Manufacture of ceramic bricks using recycled brewing spent Kieselguhr. Mat Manuf Proc. 26(10): 1319–1329. 10.1080/10426914.2011.551908

Ferreira A.M., Martins J., Carvalho L.H., and Magalhäes F.D. 2019. Biosourced disposable trays made of brewer’s spent grain and potato starch. Polymers, 11(5): 923. 10.3390/polym11050923

Ferreira I.M.P.L.V.O., Pinhoa O., Vieiraa E., and Tavarelaa J.G. 2010. Brewer’s saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci. Technol. 21: 77–84. 10.1016/j.tifs.2009.10.008

Fillaudeau L., Blanpain-Avet P., and Daufin G. 2006. Water, wastewater and waste management in brewing industries. J Clean Prod. 14: 463–471. 10.1016/j.jclepro.2005.01.002

Food and Agriculture Organization (FAO). 2009. Agribusiness handbook: barley, malt, beer. FAO, Rome, Italy, p. 17.

Formela K., Hejna A., Zedler Ł., Przybysz M., Ryl J., Saeb M.R., and Piszczyk Ł. 2017. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind Crops Prod. 108: 844–852. 10.1016/J.INDCROP.2017.07.047

Garcia-Garcia G., Woolley E., and Rahimifard S. 2015. A framework for a more efficient approach to food waste management. Int J Food Eng. 1(1): 65–72. 10.18178/ijfe.1.1.65-72

Gong X., Tian W., Wang L., Bai J., Qiao K., and Zhao J. 2019. Biological regeneration of brewery spent diatomite and its reuse in basic dye and chromium (III) ions removal. Proc Safety Environ Prot. 128: 353–361. 10.1016/j.psep.2019.05.024

González-García S., Morales P.C., and Gullón B. 2018. Estimating the environmental impacts of a brewery waste-based biorefinery: bioethanol and xylooligosaccharides joint production case study. Ind Crops Prod. 123: 331–340. 10.1016/j.indcrop.2018.07.003

Gopal C. and Rehmanji M. 2000. PVPP–the route to effective beer stabilization. Brewers’ Guardian, 1–6 May 2000.

Grains Research & Development Corporation (GRDC). 2018. Barley–Section 15–marketing. GRDC Grownotes, pp. 1–6. Available at: (accessed 18 Sep 2021).

Grand View Research (GVR). 2021. Lactic acid market size, share & trends analysis report by raw material (sugarcane, corn, cassava), by application (PLA, food, & beverages), by region, and segment forecasts, 2021–2028. Available at: (accessed 03 Sep 2021).

Grilla E., Vakros J., Konstantinou I., Manariotis I.D., and Mantzavinos D. 2020. Activation of persulfate by biochar from spent malt rootlets for the degradation of trimethoprim in the presence of inorganic ions. J Chem Technol Biotechnol. 95: 2348–2358. 10.1002/jctb.6513

GR-Store. 2021. Global citric acid powder industry research report 2021 segmented by major market players, types, applications and countries forecast to 2027. Available at: (accessed 03 Sep 2021).

Gupta M., Abu-Ghannam N., and Gallaghar E. 2010. Barley for brewing: characteristic changes during malting, brewing and applications of its by-products. Compreh Rev Food Sci Food Safety. 9: 318–328. 10.1111/j.1541-4337.2010.00112.x

Hejna A., Barczewski M., Skórczewska K., Szulc J., Chmielnicki B., Korol J., and Formela K. 2021. Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder. J Clean Prod. 25: 124839. 10.1016/j.jclepro.2020.124839

Holland D. 2021. The history, production process of beer & how circular principles can be applied. Available at: (accessed 29 Jul 2021).

Hospido A., Moreira M.T., and Feijoo G. 2005. Environmental analysis of beer production. Int J Agr Res Govern Ecol. 4(2): 152–162. 10.1504/IJARGE.2005.007197

Huige N.J. 2006. Brewery by-products and effluents. In: Priest F.G. and Stewart G.G. (eds.), Handbook of brewing, 2nd ed. Taylor & Francis, Boca Raton, FL, USA, pp. 656–707.

Huijbregts M.A.J., Hellweg S., Frischknecht R., Hendriks H.W.M., Hungerbühler K., and Hendriks A.J. 2010. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol. 44(6): 2189–2196. 10.1021/es902870s

Huijbregts M.A.J., Rombouts L.J.A., Hellweg S., Frischknecht R., Hendriks A.J., van de Meent D., Ragas A.M.J., Reijnders L., and Struijs J. 2006. Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol. 40(3): 641–648. 10.1021/es051689g

IMARC Group. 2021. Beer market: global industry trends, share, size, growth, opportunity and forecast 2021–2026. Available at: (accessed 30 July 2021).

Intergovernmental Panel on Climate Change (IPCC). 2014. Summary for policymakers. In: Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L, Estrada Y.O., Genova R.C., Girma B., Kissel E.S, Levy A.N., MacCracken S., Mastrandrea P.R. and White L.L. (Eds.), Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 1–32.

International Finance Corporation (IFC). 2007. Environmental, health, and safety guidelines for breweries. Available at: (accessed 11 Aug 2020).

Jackowski M., Niedźwiecki Ł., Jagiełło K., Uchańska O., and Trusek A. 2020. Brewer’s spent grains–valuable beer industry by-product. Biomolecules. 10: 1669. 10.3390/biom10121669

Jackowski M., Semba D., Trusek A., Wnukowsk, M., Niedzwiecki L., Baranowski M., Krochmalny K., and Pawlak-Kruczek H. 2019. Hydrothermal carbonization of brewery’s spent grains for the production of solid biofuels. Beverages. 5: 12. 10.3390/beverages5010012

Kan X., Zhang J., Wah Y., and Wang C. 2018. Overall evaluation of microwave-assisted alkali pretreatment for enhancement of biomethane production from brewers’ spent grain. Energy Convers Manag. 158: 315–326. 10.1016/j.enconman.2017.12.088

Karlović A., Jurić A., Ćorić N., Habschied K., Krstanović V., and Mastanjević K. 2020. By-products in the malting and brewing industries–re-usage possibilities. Fermentation, 6: 82. 10.3390/fermentation6030082

Kerby C. and Vriesekoop F. 2017. An overview of the utilisation of brewery by-products as generated by British craft breweries. Beverages. 2017(3): 24. 10.3390/beverages3020024

Kim H.-W., Hwang K.-E., Song D.-H., Lee S.-Y., Choi M.-S., Lim Y.-B., Choi J.-H., Choi Y.-S., Kim H.-Y., and Kim C.-J. 2013. Effects of dietary fiber extracts from brewer's spent grain on quality characteristics of chicken patties cooked in convective oven. Korean J Food Sci An. 33(1): 45–52. 10.5851/kosfa.2013.33.1.45

Kirjoranta S., Tenkanen M., and Jouppila K. 2016. Effects of process parameters on the properties of barley containing snacks enriched with brewer’s spent grain. J Food Sci Technol. 53: 775–783. 10.1007/s13197-015-2079-6

Kissell L., Prentice N., and Lindsay R. 1979. Protein and fiber enrichment of cookie flour with brewer's spent grain. Cereal Chem. 56: 261–266.

Koroneos C., Roumbas G., Gabari Z., Papagiannidou E., and Moussiopoulos N. 2005. Life cycle assessment of beer production in Greece. J Clean Prod. 13(4): 433–439. 10.1016/j.jclepro.2003.09.010

Ktenioudaki A., Chaurin V., Reis S.F., and Gallagher E. 2012. Brewer's spent grain as a functional ingredient for breadsticks. Int J Food Sci Technol. 47: 1765–1771. 10.1111/j.1365-2621.2012.03032.x

Ktenioudaki A., Crofton E., Scannell A.G.M., Hannon J.A., Kilcawley K.N., and Gallagher E. 2013. Sensory properties and aromatic composition of baked snacks containing brewer’s spent grain. J Cereal Sci. 57: 384–390. 10.1016/j.jcs.2013.01.009

Kusch-Brandt S., Mumme J., Nashalian O., Girotto F., Lavagnolo M.C., and Udenigwe C. 2019. Valorization of residues from beverage production. In: Grumezescu A., Holban A. M. (eds.), Processing and sustainability of beverages, Chap. 13. Elsevier, Philadelphia, PA, USA, pp. 451–494.

Laitila A., Saarela M., Kirk L., Siika-Aho M., Haikara A., Mattila-Sandholm T., and Virkajärvi I. 2004. Malt sprout extract medium for cultivation of Lactobacillus plantarum protective cultures. Lett Appl Microbiol. 39: 336–340. 10.1111/j.1472-765X.2004.01579.x

Li Q., Qi Y. and Gao C. 2015. Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry. J Clean Prod. 86: 424–431. 10.1016/j.jclepro.2014.08.008

Mahmud S.A., Hirasawa T., and Shimizu H. 2010. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioengin. 109: 262–266. 10.1016/j.jbiosc.2009.08.500

Mancini S., Fratini F., Turchi B., Mattioli S., Dal Bosco A., Tuccinardi T., Nozic S., and Paci G. 2019. Former foodstuff products in Tenebrio molitor rearing: effects on growth, chemical composition, microbiological load, and antioxidant status. Animals. 9: 484. 10.3390/ani9080484

Mariotta C. and Tuscano J. 2020. Imballaggi e rifiuti di imballaggio. In: Rapporto rifiuti urbani – edizione 2020, Chap. 4. ISPRA Rapporti 331/2020. Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma, pp. 177–205. Available at: (accessed 5 Sep 2021).

Mata T.M. and Costa C.A.V. 2001. Life cycle assessment of different reuse percentages for glass beer bottles. Int J Life Cycle Assessm. 6(5): 307–319. 10.1007/BF02978793

Metzger B.T., Scholl C. and Barnes D.M. 2012. Supercritical fluid extraction of vitamin D2 from UV enhanced yeast. FASEB J. 26(Supl 1): 643.11. 10.1096/fasebj.26.1_supplement.643.11

Mishra P.K., Gregor T. and Wimmer R. 2017. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. Bioresources. 12(1): 107–116. 10.15376/biores.12.1.107–116

Moresi M. and Parente E. 1999. Production of organic acids. In: Robinson R. K., Batt C. A., Patel P.D. (eds.), Encyclopedia of food microbiology. Academic Press, New York, NY, pp. 705–717.

Muñoz E., Riquelme C., and Cardenas J. P. 2012. Carbon footprint of beer – analysis of a small scale processing plant in Chile. In: Proceedings of the 2nd LCA conference, 6–7 November 2012, Lille, France.

Mussatto S.I. 2009. Biotechnological potential of brewing industry by-products. In: Singh nee’ Nigam P. and Pandey A. (eds.), Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues, Chap. 16. Springer Science, Berlin, Germany, pp. 313–326.

Mussatto S.I., Fernandes M., Rocha G.J.M., Órfão J.J.M., Teixeira J.A., and Roberto I.C. 2010. Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresour Technol. 101: 2450–2457. 10.1016/j.biortech.2009.11.025

Mussatto S.I. and Roberto I.C. 2008. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem. 43: 540–546. 10.1016/j.procbio.2008.01.013

Mycoterra Farm. 2015. Cultivation of gourmet mushrooms using brewer’s spent grain. Final Report for FNE14-795. Available at: (accessed 30 Jul 2021).

Nagy M., Semeniuc C.A., Socaci S.A., Pop C.A., Rotar A.M., Salagean C.D., and Tofana M. 2017. Utilization of brewer's spent grain and mushrooms in fortification of smoked sausages. Food Sci Technol. 37: 315–320. 10.1590/1678-457x.23816

Narayanaswamy V., Van Berkel R., Altham J., and McGregor M. 2005. Application of life cycle assessment to enhance eco-efficiency of grains supply chains. In: Proceedings of the 4th Australian LCA Conference, 23–25 February, 2005, Sydney, NSW, Australia.

Nazzaro J., Martin D.S., Perez-Vendrell A.M., Padrell L., Iñarra B., Orive M., and Estévez A. 2021. Apparent digestibility coefficients of brewer’s by-products used in feeds for rainbow trout (Oncorhynchus mykiss) and gilthead seabream (Sparus aurata). Aquaculture. 530: 735796. 10.1016/j.aquaculture.2020.735796

Neylon E., Arendt E.K., Lynch K.M., Zannini E., Bazzoli P., Monin T., and Sahin A.W. 2020. Rootlets, a malting by-product with great potential. Fermentation. 6: 117. 10.3390/fermentation6040117ć

Nocente F., Taddei F., Galassi E., and Gazza L. 2019. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. Food Sci. Technol (LWT). 114: 108421. 10.1016/j.lwt.2019.108421

Normand J., Battista K., Bobier J., Schritt C., and Antony S. 2012. Life cycle assessment of beer. Available at: (accessed 12 Sep 2021).

Nsoanya L.N and Nweke I.A. 2015. Effect of integrated use of spent grain and NPK (20:10:10) fertilizer on soil chemical properties and maize (Zea Mays L) growth. Int J Res Agr Forest. 2(3): 14–19.

Olajire A.A. 2020. The brewing industry and environmental challenges. J Clean Prod. 256: 102817. 10.1016/j.jclepro.2012.03.003

Özvural E.B., Vural H., Gökbulut I., and Özboy-Özbaş Ö. 2009. Utilization of brewer’s spent grain in the production of Frankfurters. Int J Food Sci Technol. 44: 1093–1099. 10.1111/j.1365-2621.2009.01921.x

Paládi M. 2013. Comparison of CO2 emissions of households heated by natural gas and firewood. Landscape Environ. 7(2): 64–72.

Pauli G. 1997. Zero emissions: the ultimate goal of cleaner production. J Clean Prod. 5(1–2): 109–113. 10.1016/S0959-6526(97)00013-9

Paynter B. 1996. Grain protein and malting quality in barley. Farmnote No. 40. Agriculture Western Australia. Available at: (accessed 18 Sep 2021).

Petrovic J., Pajin B., Tanackov-Kocic S., Pejin J., Fistes A., Bojanic N., and Loncarevic I. 2017. Quality properties of cookies supplemented with fresh brewer’s spent grain. Food Feed Res. 44: 57–63.

Podpora B., Swiderski F., Sadowska A., Rakovska R., and Wasiak-Zys G. 2016. Spent brewer's yeast extracts as a new component of functional food. Czech J Food Sci. 34: 554–563. 10.17221/419/2015-CJFS

Qin F., Johansen A.Z., and Mussatto S.I. 2018. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind Crops Prod. 125: 443–453. 10.1016/j.indcrop.2018.09.017

Qiu L., Li J.-J., Li Z. and Wang J.-J. 2019. Production and characterization of biocontrol fertilizer from brewer’s spent grain via solid-state fermentation. Sci Rep. 9: 480. 10.1038/s41598-018-36949-1

Rachwał K., Waško A., Gustaw K. and Polak-Berecka M. 2020. Utilization of brewery wastes in food industry. Peer J. 8: e9427. 10.7717/peerj.9427

Radosavljević M., Pejin J., Pribić M., Kocić-Tanackov S., Mladenović D., Djukić-Vuković A., and Mojović L. 2020. Brewing and malting technology by-products as raw materials in L-(+)-lactic acid fermentation. J Chem Technol Biotechnol. 95: 339–347. 10.1002/jctb.5878

Reis S.F., Coelho E., Coimbra M.A. and Abu-Ghannam N. 2015. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrason Sonochem. 24: 155–164. 10.1016/j.ultsonch.2014.10.010

Rogissart L., Foucherot C. and Bellassen V. 2019. Estimating greenhouse gas emissions from food consumption: methods and results. I4CE. Institute for Climate Economics, Paris, France.

Rommi K., Niemi P., Kemppainen K., and Kruus K. 2018. Impact of thermochemical pre-treatment and carbohydrate and protein hydrolyzing enzyme treatment on fractionation of protein and lignin from brewer’s spent grain. J Cereal Sci. 79: 168–173. 10.1016/j.jcs.2017.10.005

Russ W., Mörtel H., and Meyer-Pittroff R. 2005. Application of spent grains to increase porosity in bricks. Constr Build Mater. 19: 117–126. 10.1016/j.conbuildmat.2004.05.014

Saenge C., Cheirsilp B., Suksaroge T.T., and Bourtoom T. 2011. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 46: 210–218. 10.1016/j.procbio.2010.08.009

Sakaguchi K., Kibi M., and Kuminaka A. 1963. Process for improving the flavour of foods by the addition of 5’nucleotides. US patent No. 3104171A, 17 Sep 1963.

Sakaguchi K. andKuninaka A. 1965. Production of 5’nucleotides. US patent No. 3223592A, 14 Dec 1965.

Sala S., Cerutti A.K., and Pant R. 2018. Development of a weighting approach for the environmental footprint. Publications Office, European Union, Luxembourg. Available at: (accessed 19 Sep 2021).

Sganzerla W.G., Ampese L.C., Mussatto S.I., and Forster-Carneiro T. 2021. A bibliometric analysis on potential uses of brewer’s spent grains in a biorefinery for the circular economy transition of the beer industry. Biofuels Bioprod Biorefining., 15(6): 1965–1988. 10.1002/bbb.2290

Shin R. and Searcy C. 2018. Evaluating the greenhouse gas emissions in the craft beer industry: an assessment of challenges and benefits of greenhouse gas accounting. Sustainability. 10(11): 4191. 10.3390/su10114191

Siebert K.J., Carrasco A. and Lynn P.Y. 1996. Formation of protein-polyphenol haze in beverages. J Agr Food Chem. 44: 1997–2005. 10.1021/jf950716r

Singh R. and Saini G. 2012. Biosynthesis of pullulan and its applications in food and pharmaceutical industry. In: Satyanarayana T., Johri B., Prakash A. (Eds.), Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, the Netherlands, pp. 509–553.

Sombutyanuchit P., Suphantharika M., and Verduyn C. 2001. Preparation of 50-GMP-rich yeast extracts from spent brewer’s yeast. World J. Microbiol Biotechnol. 17: 163–168.

Sperandio G., Amoriello T., Carbone K., Fedrizzi M., Monteleone A., Tarangioli S., and Pagano M. 2017. Increasing the value of spent grain from craft microbreweries for energy purposes. Chem Eng Trans. 58: 487–492.

Spinelli S., Conte A., and Del Nobile M.A. 2016. Microencapsulation of extracted bioactive compounds from brewer's spent grain to enrich fish-burgers. Food Bioprod Process. 100: 450–456. 10.1016/j.fbp.2016.09.005

Statista. 2021. Beer production worldwide from 1998 to 2019. Available at: (accessed 05 Aug 2021).

Stefanello F.S., Dos Santos C.O., Bochi V.C., Fruet A.P.B., Soquetta M.B., Dörr A.C, and Nörnberg J.L. 2018. Analysis of polyphenols in brewer's spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem. 239: 385–401. 10.1016/j.foodchem.2017.06.130

Steinmacher N.C., Honna F.A., Gasparetto A.V., Anibal D., and Grossmann M.V.E. 2012. Bioconversion of brewer’s spent grains by reactive extrusion and their application in bread-making. Food Sci Technol (LWT). 46: 542–547. 10.1016/j.lwt.2011.11.011

Stojceska V., Ainsworth P., Plunkett A., and Ibanoglu S. 2008. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J Cereal Sci. 47: 469–479. 10.1016/j.jcs.2007.05.016

Stubits M., Teng J., and Pereira J. 1986. Characterization of malt grist fractions. Am Soc Brew Chem J. 44(1): 12–15. 10.1094/ASBCJ-44-0012

Sturm B., Butcher M., Wang Y., Huang Y., and Roskilly T. 2012. The feasibility of the sustainable energy supply from bio wastes for a small-scale brewery–a case study. ApplTherm Eng. 39: 45–52. 10.1016/j.applthermaleng.2012.01.036

Sturm B., Hugenschmidt S., Joyce S., Hofacker W., and Roskilly A.P. 2013. Opportunities and barriers for efficient energy use in a medium-sized brewery. Appl Therm Eng. 53: 397–404. 10.1016/j.applthermaleng.2012.05.006

Talve S. 2001. Life cycle assessment of a basic lager beer. Int J Life Cycle Assessm. 6(5): 293–298. 10.1007/BF02978791

Tan Y.X., Mok W.K., and Chen W.N. 2020. Potential novel nutritional beverage using submerged fermentation with Bacillus subtilis WX-17 on brewers’ spent grains. Heliyon. 6: e04155. 10.1016/j.heliyon.2020.e04155.

Technical Secretariat for the Beer Pilot (TSBP). 2016. Product environmental footprint category rules for beer. Draft version 2.5, 17 March 2016. Available at: (accessed 12 Sep 2021).

Thammakiti S., Suphantharika M., Phaesuwan T., and Verduyn C. 2004. Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int J. Food Sci Tech. 39: 21–29. 10.1111/j.1365-2621.2004.00742.x

The Maltsters Association of Great Britain (MAGB). n.d. Malting co-products. Valuable nutritional ingredients for the feed industry. Available at: (accessed 22 Aug 2021).

Tsavatopoulou V.D., Vakros J., and Manariotis I.D. 2020. Lipid conversion of Scenedesmus rubescens biomass into biodiesel using biochar catalysts from malt spent rootlets. J Chem Technol Biotechnol. 95: 2421–2429. 10.1002/jctb.6424

United Nations Environment Program (UNEP). 1996. Environmental management in the brewing industry. Technical report series No. 33. UNEP, Paris, France.

Vieira E.F., Carvalho J., Pinto E., Cunha S., Almeida A.A., Ferreira I.M.P.L.V.O. 2016. Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. J Food Comp Analy. 52: 44–51.

Vieira E., Rocha M.A.M., Coelho E., Pinho O., Saraiva J.A., Ferreira I.M.P.L.V.O., and Coimbra M.A. 2014. Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Ind Crops Prod. 52: 136–143. 10.1016/j.indcrop.2013.10.012

Vitanza R., Cortesi A., Gallo V., Colussi, I., and De Arana-Sarabia M.E. 2016. Biovalorization of brewery waste by applying anaerobic digestion. Chem Biochem Eng. Q. 30: 351–357. 10.15255/CABEQ.2015.2237

Wang H., Tao Y., Temudo M., Schooneveld M., Bijl H., Ren N., Wolf M., Heine C., Foerster A., Pelenc V., Kloek J., and van Lier J.B. 2015. An integrated approach for efficient biomethane production from solid bio-wastes in a compact system. Biotechnol Biofuels. 8: 62. 10.1186/s13068-015-0237-8.

Waters D.M., Kingston W., Jacob F., Titze J., Arendt E.K., and Zannini E. 2013. Wheat bread biofortification with rootlets, a malting by-product. J Sci Food Agric. 93: 2372–2383. 10.1002/jsfa.6059

Watson J. 2008. Draught beer beats bottled in life cycle assessment. Available at: (accessed 28 Aug 2016).

White J.S., Yohannan B.K., and Walker G.M. 2008. Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 8: 1175–1184. 10.1111/j.1567-1364.2008.00390.x

Wikipedia. 2021. Marmite. Available at: (accessed 25 Aug 2021).

Wilkinson S., Smart K.A., James S., and Cook D.J. 2017. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. Bioenergy Res. 10: 146–157. 10.1007/s12155-016-9782-7

Williams A.G. and Mekonen S. 2014. Environmental performance of traditional beer production in a micro-brewery. In: Schenck R., Huizenga D. (eds.), Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-food Sector, San Francisco, CA, USA, 8–10 October 2014. American Center for Life Cycle Assessment (ACLCA), Vashon, WA, USA, pp. 1535–1540. Available at: (accessed 28 Aug 2016).

Worrasinchai S., Suphantharika, M., Pinjai S., and Jamnong P. 2006. β-glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 20: 68–78. 10.1016/j.foodhyd.2005.03.005

Xiros C., Topakas E., Katapodis P., and Christakopoulos P. 2008. Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crops Prod. 28: 213–224. 10.1016/j.indcrop.2008.02.004

Yamaguchi S. 1998. Basic properties of umami and its effects on food flavor. Food Rev Int. 14: 139–176. 10.1080/87559129809541156

Yu D., Sun Y., Wang W., O’Keefe S.F., Neilson A.P., Feng H., Wang Z., and Huang H. 2020. Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication. Int J Food Sci Technol. 55: 357–368. 10.1111/ijfs.14314

Zalynthios G. and Varzakas T. 2016. Carotenoids: from plants to food industry. Curr Res Nutr Food Sci. 4: 38–51. 10.12944/CRNFSJ.4.Special-Issue1.04

Zürcher C. and Gruss R. 1990. Method of making alcohol-free or nearly alcohol-free beer. US patent No. 5077061, 21 December 1990.