Natural protective agents and their applications as bio-preservatives in the food industry An overview of current and future applications

Main Article Content

Saber Amiri
Zahra Motalebi Moghanjougi
Mahmoud Rezazadeh Bari
Amin Mousavi Khaneghah

Keywords

bioactive compounds; antioxidants; protective culture; Antimicrobial peptides; bacteriocin; essential oils

Abstract

Today, the usage of natural additives in the food matrix has increased. Natural antimicrobial compounds include peptides, enzymes, bacteriocins, bacteriophages, plant extracts, essential oils, and fermented compounds that can be used as alternatives to chemical antimicrobials. Plant extracts and essential oils contain terpenes, flavonoids, aldehydes, and phenolic compounds that cause antimicrobial and antioxidant activity. The synergistic activity of compounds synthesized from lactic acid bacteria (LAB) prevents the growth of bacteria and fungi. In addition to removing mycotoxins, LAB compounds have antioxidant and anticancer potentials and increase food safety and nutritional value. One of these antimicrobial molecules is bacteriocin, which is made by various microorganisms. Nisin is one of these bioactive peptides that are used widely in food bio-preservation. Antimicrobial peptides can be used alone or along with other compounds to enhance food security. This article reviews natural preservatives and their applications in food products.

Abstract 379 | PDF Downloads 157 XML Downloads 8 HTML Downloads 68

References

Ahmad, S., Gokulakrishnan, P., Giriprasad, R. and Yatoo, M., 2015. Fruit-based natural antioxidants in meat and meat products: a review. Critical Reviews in Food Science and Nutrition 55(11): 1503–1513. https://doi.org/10.1080/10408398.2012.701674
Ahmad, V., Khan, M.S., Jamal, Q.M.S., Alzohairy, M.A., Al Karaawi, M.A. and Siddiqui, M.U., 2017. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49(1): 1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016
Aires, A., Mota, V., Saavedra, M., Rosa, E. and Bennett, R., 2009. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. Journal of Applied Microbiology 106(6): 2086–2095. https://doi.org/10.1111/j.1365-2672.2009.04180.x
Al-Hijazeen, M., Lee, E.J., Mendonca, A. and Ahn, D.U., 2016. Effect of oregano essential oil (Origanum vulgare subsp. hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidants 5(2): 18. https://doi.org/10.3390/ antiox5020018
Amiri, S., Aghamirzaei, M., Mostashari, P., Sarbazi, M., Tizchang, S. and Madahi, H., 2020a. The impact of biotechnology on dairy industry. In Microbial biotechnology in food and health, pp. 53–79. Elsevier. Academic Press. London, United Kingdom.
Amiri, S., Mokarram, R.R., Khiabani, M.S., Bari, M.R. and Alizadeh,  M., 2020b. Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology 20: 1–12. https://doi.org/10.1007/s13197-020-04894-5
Amiri, S., Mokarram, R.R., Khiabani, M.S., Bari, M.R. and Khaledabad, M.A., 2019a. Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules 123: 752–765. https://doi.org/10.1016/j.ijbiomac.2018.11.084
Amiri, S., Mokarram, R.R., Khiabani, M.S., Bari, M.R. and Khaledabad, M.A., 2020c. In situ production of conjugated linoleic acid by Bifidobacterium lactis BB12 and Lactobacillus acidophilus LA5 in milk model medium. LWT 132: 109933. https://doi.org/10.1016/j.lwt.2020.109933
Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M. and Amiri, S., 2019b. New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology 28(2): 423–432. https://doi.org/10.1007/s10068-018-0493-z
Amiri, S., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Rezaei Mokarram, R. and Sowti Khiabani, M., 2021b. Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization 1–16. https://doi.org/10.1007/s12649-021-01429-7
Amiri, S., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Rezaei Mokarram, R. and Sowti Khiabani, M., 2021c. Co-production of parabiotic metabolites by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12 in dairy effluents. Chemical Review and Letters 4(2), 66–76. https://doi.org/10.22034/crl.2021.253739.1086
Amiri, S., Saray, F.R., Rezazad-Bari, L. and Pirsa, S., 2021a. Optimization of extraction and characterization of physico-chemical, structural, thermal, and antioxidant properties of mucilage from Hollyhock’s root: a functional heteropolysaccharide. Journal of Food Measurement and Characterization 15, 2889–2903. https://doi.org/10.1007/s11694021-00870-5
Aziz, M. and Karboune, S., 2018. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vege-tables: a review. Critical Reviews in Food Science and Nutrition 58(3): 486–511. https://doi.org/10.1080/10408398.2016.1194256
Azizi, S., Bari, M.R., Almasi, H. and Amiri, S., 2021. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: effect of encapsulation method and transglutaminase. Food Bioscience 41: 101012. https://doi.org/10.1016/j.fbio.2021.101012
Baines, D. and Seal, R., 2012. Natural food additives, ingredients and flavourings. Elsevier. Woodhead Publishing, Philadelphia, PA, USA. Bai-Ngew, S., Chuensun, T., Wangtueai, S., Phongthai, S., Jantanasakulwong, K., Rachtanapun, P.,. and Phimolsiripol, Y., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life.  Quality Assurance and Safety of Crops & Foods,  13(2):
25–33. https://doi.org/10.15586/qas.v13i2.882
Banon, S., Díaz, P., Rodríguez, M., Garrido, M.D. and Price, A., 2007. Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Science 77(4): 626– 633. https://doi.org/10.1016/j.meatsci.2007.05.015
Bayarri, M., Oulahal, N., Degraeve, P. and Gharsallaoui, A., 2014. Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering 131: 18–25. https://doi.org/10.1016/j.jfoodeng.2014.01.013
Birti?, S., Dussort, P., Pierre, F.-X., Bily, A.C. and Roller, M., 2015. Carnosic acid. Phytochemistry 115: 9–19. https://doi.org/10.1016/j.phytochem.2014.12.026
Brewer, M., 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety 10(4): 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Bukvi?ki, D., Stojkovi?, D., Sokovi?, M., Vannini, L., Montanari, C., Pejin, B., et al. 2014. Satureja horvatii essential oil: in vitro antimicrobial and antiradical properties and in situ control of Listeria monocytogenes in pork meat. Meat Science 96(3): 1355– 1360. https://doi.org/10.1016/j.meatsci.2013.11.024
Burrowes, O., Hadjicharalambous, C., Diamond, G. and LEE,  T.C., 2004. Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. Journal of Food Science 69(3), FMS66–FMS71. https://doi. org/10.1111/j.13652621.2004.tb13373.x
Campos, C.A., Gerschenson, L.N. and Flores, S.K., 2011. Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology 4(6): 849–875. https://doi.org/10.1007/s11947-010-0434-1
Carocho, M., Morales, P. and Ferreira, I.C., 2018. Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science & Technology 71: 107– 120. https://doi.org/10.1016/j.tifs.2017.11.008
Carvalho, C., Costa, A.R., Silva, F. and Oliveira, A., 2017. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Critical Reviews in Microbiology 43(5): 583–601. https://doi.org/10.1080/1040841X.2016.1271309
Chibeu, A., Agius, L., Gao, A., Sabour, P.M., Kropinski, A.M. and Balamurugan, S., 2013. Efficacy of bacteriophage LISTEX™ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. International Journal of Food Microbiology 167(2): 208–214. https://doi.org/10.1016/j.ijfoodmicro.2013.08.018
Cui, H., Yuan, L. and Lin, L., 2017. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157: H7 in beef. Carbohydrate Polymers 177: 156–164. https://doi.org/10.1016/j.carbpol.2017.08.137
Díez, L., Rojo-Bezares, B., Zarazaga, M., Rodríguez, J.M., Torres, C. and Ruiz-Larrea, F., 2012. Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiology 31(2): 167–172. https://doi.org/10.1016/j.fm.2012.03.006
Dussault, D., Vu, K.D. and Lacroix, M., 2014. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Science 96(1): 514–520. https://doi.org/10.1016/j.meatsci.2013.08.015
Dutta, P., Tripathi, S., Mehrotra, G. and Dutta, J., 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry 114(4): 1173–1182. https://doi.org/10.1016/j.foodchem.2008.11.047
Elbarbary, H.A., Abdou, A.M., Nakamura, Y., Park, E.Y., Mohamed, H.A. and Sato, K., 2012. Identification of novel antibacterial pep-tides isolated from a commercially available casein hydrolysate by autofocusing technique. Biofactors 38(4): 309–315. https://doi.org/10.1002/biof.1023
Embuscado, M.E., 2015. Spices and herbs: natural sources of antioxidants–a mini review. Journal of functional foods 18: 811– 819. https://doi.org/10.1016/j.jff.2015.03.005
Favaro, L., Penna, A.L.B. and Todorov, S.D., 2015. Bacteriocinogenic LAB from cheeses–application in biopreservation? Trends in Food Science & Technology 41(1): 37–48. https://doi.org/10.1016/j.tifs.2014.09.001
Ghamari, M.A., Amiri, S., Rezazadeh-Bari, M. and Rezazad-Bari, L., 2021. Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polymer Bulletin 1–21. https://doi.org/10.1007/s00289-021-03550-y
Gholam-Zhiyan, A., Amiri, S., Rezazadeh-Bari, M. and Pirsa, S., 2021. Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in Milk Proteins Concentrate (MPC)-Based Edible Film. Journal of Packaging Technology and Research 5: 11–22. https://doi.org/10.1007/s41783-021-00106-3
Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., et al. 2018. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology 9:1639. https://doi.org/10.3389/fmicb.2018.01639
Gyawali, R. and Ibrahim, S.A., 2014. Natural products as antimicrobial agents. Food Control 46: 412–429. https://doi.org/10.1016/j. foodcont.2014.05.047
Hyldgaard, M., Mygind, T. and Meyer, R.L., 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3: 12. https://doi.org/10.3389/fmicb.2012.00012
Ibrahim, S.A., Salameh, M., Phetsomphou, S., Yang, H. and Seo, C., 2006. Application of caffeine, 1, 3, 7-trimethylxanthine, to con-trol Escherichia coli O157: H7. Food Chemistry 99(4): 645–650. https://doi.org/10.1016/j.foodchem.2005.08.026
Irkin, R. and Esmer, O.K., 2015. Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology 52(10): 6095–6111. https://doi.org/10.1007/s13197-015-1780-9
Jenssen, H. and Hancock, R.E., 2009. Antimicrobial properties of lactoferrin. Biochimie 91(1): 19–29. https://doi.org/10.1016/j.biochi.2008.05.015
Juneja, V.K., Dwivedi, H.P. and Yan, X., 2012. Novel natural food anti-microbials. Annual Review of Food Science and Technology 3: 381–403. https://doi.org/10.1146/annurev-food-022811-101241
Khaneghah, A. M., Hashemi, S. M. B. and Limbo, S. 2018. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interac-tions. Food and Bioproducts Processing, 111: 1–19. https://doi.org/10.1016/j.fbp.2018.05.001
Kim, S. and Fung, D., 2004. Antibacterial effect of crude water-soluble arrowroot (Puerariae radix) tea extracts on foodborne pathogens in liquid medium. Letters in Applied Microbiology 39(4): 319–325. https://doi.org/10.1111/j.1472765X.2004.01582.x
Kumar, N. and Pruthi, V., 2014. Potential applications of ferulic acid from natural sources. Biotechnology Reports 4: 86–93. https:// doi.org/10.1016/j.btre.2014.09.002
Lone, A., Anany, H., Hakeem, M., Aguis, L., Avdjian, A.-C., Bouget,  M., et al. 2016. Development of prototypes of bio-active packaging materials based on immobilized bacterio-phages for control of growth of bacterial pathogens in foods. International Journal of Food Microbiology 217: 49–58. https://doi.org/10.1016/j.ijfoodmicro.2015.10.011
Lu, Y., Joerger, R. and Wu, C., 2014. Similar reduction of Salmonella enterica Typhimurium on grape tomatoes and its cross-contamination in wash water by washing with natural antimicrobials as compared with chlorine treatment. Food and Bioprocess Technology 7(3): 661–670. https://doi.org/10.1007/ s11947-013-1105-9
Luz, C., Izzo, L., Ritieni, A., Mañes, J. and Meca, G., 2020. Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: an application as biopreservation agent in pita bread. LWT 118: 108717. https://doi.org/10.1016/j.lwt.2019.108717
Mahmud, J. and Khan, R.A., 2018. Characterization of natural antimicrobials in food system. Advances in Microbiology 8(11): 894. https://doi.org/10.4236/aim.2018.811060
Maleki, O., Khaledabad, M.A., Amiri, S., Asl, A.K. and Makouie, S., 2020. Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. LWT 126: 109224. https://doi.org/10.1016/j.lwt.2020.109224
Marei, G.I.K., Rasoul, M.A.A. and Abdelgaleil, S.A., 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology 103(1): 56–61. https://doi.org/10.1016/j.pestbp.2012.03.004
Martínez-García, M., Bart, J.-M., Campos-Salinas, J., Valdivia, E., Martínez-Bueno, M., González-Rey, E., et al. 2018. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. International Journal for Parasitology: Drugs and Drug Resistance 8(2), 203–212. https://doi.org/10.1016/j. ijpddr.2018.03.002
Massani, M.B., Molina, V., Sanchez, M., Renaud, V., Eisenberg, P. and Vignolo, G., 2014. Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: effectiveness assessment in Wieners. International Journal of Food Microbiology 178: 7–12. https://doi.org/10.1016/j.ijfoodmicro.2014.02.013
Milicevic, B., Tomovi?, V., Danilovi?, B. and Savi?, D., 2021. The influence of starter cultures on the lactic acid bacteria microbi-ota of Petrovac sausage. Italian Journal of Food Science, 33(2), 24–34. https://doi.org/10.15586/ijfs.v33i2.1918
Mohajeri, N., Shotorbani, P. M., Basti, A. A., Khoshkhoo, Z. and Khanjari, A., 2021. An assessment of Cuminum cyminum (Boiss) essential oil, NaCl, bile salts and their combinations in probiotic yogurt. Italian Journal of Food Science, 33(SP1), 24–33. https://doi.org/10.15586/ijfs.v33iSP1.1990
Moghanjougi, Z.M., Bari, M.R., Khaledabad, M.A., Almasi, H. and Amiri, S., 2020. Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: optimization by response surface method and characterization. LWT 117: 108603. https://doi.org/10.1016/j.lwt.2019.108603
Montiel, R., Martín-Cabrejas, I., Langa, S., El Aouad, N., Arqués, J., Reyes, F., et al. 2014. Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food Microbiology 44: 1–5. https://doi.org/10.1016/j.fm.2014.05.006
Oranusi, S., Braide, W. and Oguoma, O., 2013. Antifungal properties of lactic acid bacteria (LAB) isolated from Ricinus commu-nis, Pentaclethra macrophylla and Yoghurts. Global Advanced Research Journal of Food Science and Technology 2(1): 001–006. http://garj.org/garjfst/2/2013/2/1/antifungal-properties-of-lactic-acid-bacteria-isolated-from-ricinus-communis-pentacle-thra-macrophylla-and-yoghurts
Pisoschi, A.M., Pop, A., Georgescu, C., Turcu?, V., Olah, N.K. and Mathe, E., 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry 143: 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095
Prakash, B., Singh, P., Mishra, P.K. and Dubey, N., 2012. Safety assessment of Zanthoxylum alatum Roxb. essential oil, its anti-fungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International Journal of Food Microbiology 153(1–2): 183–191. https://doi.org/10.1016/j.ijfoodmicro.2011.11.007
Rai, M., Pandit, R., Gaikwad, S. and Kövics, G., 2016. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology 53(9): 3381–3394. https://doi.org/10.1007/s13197-016-2318-5
Regnault-Roger, C., Vincent, C. and Arnason, J.T., 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology 57: 405–424. https://doi.org/10.1146/annurevento-120710-100554
Rezazadeh-Bari, M., Najafi-Darmian, Y., Alizadeh, M. and Amiri, S., 2019. Numerical optimization of probiotic Ayran production based on whey containing transglutaminase and Aloe vera gel. Journal of Food Science and Technology 56(7): 3502–3512. https://doi.org/10.1007/s13197-019-03841-3
Sagdic, O., Aksoy, A. and Ozkan, G. 2006. Evaluation of the antibacterial and antioxidant potentials of cranberry (gilaburu, Viburnum opulus L.) fruit extract. Acta Alimentaria 35(4): 487– 492. https://doi.org/10.1556/AAlim.35.2006.4.12
Sallam, K.I., Ishioroshi, M. and Samejima, K., 2004. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT-Food Science and Technology 37(8): 849–855. https://doi.org/10.1016/j.lwt.2004.04.001
Sava?, E., Tav?anl?, H., Çatalkaya, G., Çapano?lu, E. and Tamer, C. E., 2020. The antimicrobial and antioxidant properties of garagurt: traditional Cornelian cherry (Cornus mas) marmalade. Quality Assurance and Safety of Crops & Foods, 12(2), 12–23. https://doi.org/10.15586/qas.v12i2.627
Shan, B., Cai, Y.-Z., Brooks, J.D. and Corke, H., 2007. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne patho-genic bacteria. Journal of Agricultural and Food Chemistry 55(14): 5484–5490. https://doi.org/10.1021/jf070424d
Silva, F. and Domingues, F.C., 2017. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Critical Reviews in Food Science and Nutrition 57(1): 35–47. https://doi.org/10.1080/10408398.2013.847818
Sohrabpour, S., Rezazadeh Bari, M., Alizadeh, M. and Amiri, S., 2021. Investigation of the rheological, microbial, and physico-chemical properties of developed synbiotic yogurt containing Lactobacillus acidophilus LA-5, honey, and cinnamon extract. Journal of Food Processing and Preservation 45(4): e15323. https://doi.org/10.1111/jfpp.15323
Tajkarimi, M., Ibrahim, S.A. and Cliver, D., 2010. Antimicrobial herb and spice compounds in food. Food Control 21(9): 1199– 1218. https://doi.org/10.1111/jfpp.15323
Tiwari, B.K., Valdramidis, V.P., O’Donnell, C.P., Muthukumarappan,  K., Bourke, P. and Cullen, P., 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57(14): 5987–6000. https://doi.org/10.1021/jf900668n
Tongnuanchan, P. and Benjakul, S., 2014. Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science 79(7): R1231–R1249. https://doi.org/10.1111/1750-3841.12492
Tumbarski, Y., Petkova, N., Todorova, M., Ivanov, I., Deseva, I., Mihaylova, D. and Ibrahim, S. A., 2020. Effects of pectin-based edible coatings containing a bacteriocin of bacillus methylotrophicus bm47 on the quality and storage life of fresh black-berries.  Italian Journal of Food Science,  32(2). https://doi.org/10.14674/IJFS-1663
Upendra, R., Khandelwal, P., Jana, K., Ajay Kumar, N., Gayathri Devi, M. and Stephaney, M.L., 2016. Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. International Journal of Pharma Research and Health Sciences 4(1): 982–990.
Varsha, K.K. and Nampoothiri, K.M., 2016. Appraisal of lactic acid bacteria as protective cultures. Food Control 69: 61–64. https://doi.org/10.1016/j.foodcont.2016.04.032
Wang, S., Zeng, X., Yang, Q. and Qiao, S., 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International Journal of Molecular Sciences 17(5): 603. https://doi.org/10.3390/ijms17050603
Xing, Y., Xu, Q., Li, X., Che, Z. and Yun, J., 2012. Antifungal activities of clove oil against Rhizopus nigricans, Aspergillus flavus and Penicillium citrinum in vitro and in wounded fruit test. Journal of Food Safety 32(1): 84–93. https://doi.org/10.1111/j.1745-4565.2011.00347.x