Drying characteristics and degradation kinetics in some parameters of goji berry (Lycium Barbarum L.) fruit during hot air drying

Main Article Content

Heysem Suat Batu
Çetin Kadakal


antioxidant capacity, degradation kinetics, drying kinetics, goji berry, total phenolic content, water-soluble vitamins


Drying kinetics, color properties, water-soluble vitamins, antioxidant capacity, total phenolic content, and thermal degradation kinetics of bioactive compounds in goji berries were investigated. Drying experiments were conducted at 50°C, 60°C, and 70°C. Page model was determined as the best model to predict experimental moisture ratio for all temperatures. Increment in drying temperature increased effective moisture diffusivity and drying rate values. Vitamins C and B6, antioxidant activity and total phenolic content were significantly reduced by drying. Thermal degradation of vitamins C and B6, antioxidant capacity and total phenolic content were found to fit the first order kinetic model.

Abstract 113 | PDF Downloads 73 XML Downloads 15 HTML Downloads 20


Abdulla, G., 2012. Effect of hot air temperature on drying kinetics of golden berry. Zagazig Journal of Agricultural Research 39(4): 665–673.

Adiletta, G., Alam, S.R., Cinquanta, L., Russo, P., Albanese, D. and Di Matteo, M., 2015. Effect of abrasive pretreatment on hot dried goji berry. Chemical Engineering Transactions 44: 127– 132. https://doi.org/10.3303/CET1544022

Amagase, H. and Farnsworth, N.R., 2011. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International 44(7): 1702–1717. https://doi.org/10.1016/j. foodres.2011.03.027

Araya-Farias, M., Makhlouf, J. and Ratti, C., 2011. Drying of seabuckthorn (Hippophae rhamnoides L.) berry: impact of dehydration methods on kinetics and quality. Drying Technology 29(3): 351–359. https://doi.org/10.1080/07373937.2010.497590

Ban, Z., Wei, W., Yang, X., Feng, J., Guan, J. and Li, L., 2015. Combination of heat treatment and chitosan coating to improve postharvest quality of wolfberry (Lycium barbarum L.). International Journal of Food Science & Technology 50(4): 1019–1025. https://doi.org/10.1111/ijfs.12734

Bertoldi, D., Cossignani, L., Blasi, F., Perini, M., Barbero, A., Pianezze, S. and Montesano, D., 2019. Characterization and geographical traceability of Italian goji berries. Food Chemistry 275: 585–593. https://doi.org/10.1016/j.foodchem.2018.09.098

Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Jian, L., Wang, X., 2015. Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT—Food Science and Technology 60(2): 1136–1142. https://doi.org/10.1016/j.lwt.2014.10.006

Burke, D.S., Smidt, C.R. and Vuong, L.T., 2005. Momordica cochinchinensis, Rosa roxburghii, wolfberry, and sea buckthorn—highly nutritional fruits supported by tradition and science. Current Topics in Nutraceutical Research 3(4): 259–266.

Carr, A. and Frei, B., 1999. Does vitamin C act as a pro-oxidant under physiological conditions? The FASEB Journal 13(9): 1007–1024. https://doi.org/10.1096/fasebj.13.9.1007

Chen, J., Chao, C.T. and Wei, X. 2018. Gojiberry breeding: current status and future prospects. In: Soneji, J.R. and Nageswara-Rao,  M. (eds), Breeding and health benefits of fruit and nut crops, pp. 3–21. IntechOpen, London, United Kingdom.

Chen, Y., Martynenko, A. and Mainguy, M., 2016. Wine grape dehydration kinetics: effect of temperature and sample arrangement. In: CSBE/SCGAB 2016 Annual Conference, Halifax, Nova Scotia, Canada, July 3–6.

Cossignani, L., Blasi, F., Simonetti, M.S. and Montesano, D., 2018. Fatty acids and phytosterols to discriminate geographic origin of Lycium barbarum berry. Food Analytical Methods 11(4): 1180– 1188. https://doi.org/10.1007/s12161-017-1098-5

Crank, J., 1975. The mathematics of diffusion, 2nd ed. Clarendon Press, Oxford, UK.

Cui, B., Liu, S., Lin, X., Wang, J., Li, S., Wang, Q. and Li, S., 2011. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat diet-induced oxidative stress in rat liver tissue. Molecules 16(11): 9116–9128. https://doi.org/10.3390/ molecules16119116

Daghan, s., Yildirim, A., Yilmaz, F.M., Vardin, H. and Karaaslan, M., 2018. The effect of temperature and method of drying on Isot (Urfa pepper) and its vitamin C degradation kinetics. Italian Journal of Food Science 30(3): 504–521. https://doi. org/10.14674/IJFS-1070

Demiray, E., Seker, A. and Tulek, Y., 2017. Drying kinetics of onion (Allium cepa L.) slices with convective and microwave dry-ing. Heat and Mass Transfer 53(5): 1817–1827. https://doi. org/10.1007/s00231-016-1943-x

Demiray, E., Tulek, Y. and Yilmaz, Y., 2013. Degradation kinetics of lycopene, B-carotene and ascorbic acid in tomatoes during hot air drying. LWT—Food Science and Technology 50(1): 172–176. https://doi.org/10.1016/j.lwt.2012.06.001

Di Scala, K. and Crapiste, G., 2008. Drying kinetics and quality changes during drying of red pepper. LWT—Food Science and Technology 41(5): 789–795. https://doi.org/10.1016/j. lwt.2007.06.007

Dong, Y.H., Yang, R.Y., Wei, J., Xue, Y., Wang, R.X., Zhang, Z.T. and Yang, L.W., 2013. Research of drying characteristics of Thompson seedless grape. Advanced Materials Research 765: 3036–3041. https://doi.org/10.4028/www.scientific.net/ AMR.765-767.3036

Dönmez, A., 2015. Drying kinetics of resveratrol and water-soluble vitamins of some grape varieties grown in Denizli region. MSc. thesis, Institute of Science, Pamukkale University, Turkey.

Donno, D., Beccaro, G.L., Mellano, M.G., Cerutti, A.K. and Bounous, G., 2015. Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods 18: 1070–1085. https://doi.org/10.1016/j.jff.2014.05.020

Doymaz, I., 2006. Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering 76(2): 212–217. https://doi.org/10.1016/j.jfoodeng.2005.05.009

Doymaz, I., 2011. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat and Mass Transfer 47(3): 277–285. https://doi.org/10.1007/s00231-010-0722-3

Fang, S., Wang, Z. and Hu, X., 2009. Hot air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller): thin-layer mathematical modelling. International Journal of Food Science & Technology 44(9): 1818–1824. https://doi. org/10.1111/j.1365-2621.2009.02005.x

Fratianni, A., Niro, S., Alam, M.D.R., Cinquanta, L., Di Matteo, M., Adiletta, G. and Panfili, G., 2018. Effect of a physical pre-treatment and drying on carotenoids of goji berries (Lycium bar-barum L.). LWT—Food Science and Technology 92: 318–323. https://doi.org/10.1016/j.lwt.2018.02.048

Gamboa-Santos, J., Megías-Pérez, R., Soria, A.C., Olano, A., Montilla, A. and Villamiel, M., 2014. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries. Food Chemistry 153: 164–170. https://doi.org/10.1016/j.foodchem.2013.12.004

Gao, Y., Wei, Y., Wang, Y., Gao, F. and Chen, Z., 2017. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and Disease 8(6): 778. https://doi.org/10.14336/ AD.2017.0725

Gökkür, S. and Çelik, Z., 2016. Meyve ve sebze ürünlerinde küresel deger zinciri. Meyve Bilimi 1: 50–55.

Göztok, S.P. and Içier, F., 2017. Karbon fiber destekli kabin kuru-tucuda farkli sicakliklarda elma dilimlerinin kurutulmasi-nin incelenmesi: kurutma karakteristikleri ve performans degerlendirmesi. Akademik Gida 15(4): 355–367. https://doi. org/10.24323/akademik-gida.370103

Griffiths, M. and Huxley, A., 1992. The new Royal Horticultural Society dictionary of gardening. Macmillan, London.

Henderson, S.M. and Pabis, S., 1961. Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Engineering Research 7: 85–89.

Hiwilepo-van Hal, P., Bosschaart, C., van Twisk, C., Verkerk, R. and Dekker, M., 2012. Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits. LWT—Food Science and Technology 49(2): 188–191. https://doi.org/10.1016/j. lwt.2011.12.038

Horuz, E., Bozkurt, H., Karatas, H. and Maskan, M., 2017. Effects of hybrid (microwave-convectional) and convectional dry-ing on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chemistry 230: 295–305. https://doi.org/10.1016/j. foodchem.2017.03.046

Islam, T., Yu, X., Badwal, T.S. and Xu, B., 2017. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum L.). Chemistry Central Journal 11(1): 59. https://doi.org/10.1186/s13065-017-0287-z

Kadakal, Ç. and Duman, T., 2018. Thermal degradation kinetics of rutin and total phenolic compounds in rosehip (Rosa canina L.) nectar. Pamukkale University Journal of Engineering Sciences 24(7): 1370–1375. https://doi.org/10.5505/pajes.2017.03779

Kadakal, Ç., Duman, T. and Ekinci, R., 2017. Thermal degradation kinetics of ascorbic acid, thiamine, and riboflavin in rosehip (Rosa canina L.) nectar. Food Science and Technology 38(4): 667–673. https://doi.org/10.1590/1678-457x.11417

Koçyigit, E. and Sanlier, N., 2017. A review of composition and health effects of Lycium barbarum. International Journal of Chinese Medicine 1(1): 1–9. https://doi.org/10.11648/j. ijcm.20170101.11

Labuza, T.P., 1984. Application of chemical kinetics to deterioration of foods. Journal of Chemical Education 61(4): 348. https://doi. org/10.1021/ed061p348

Labuza, T.P. and Riboh, D., 1982. Theory and application of Arrhenius kinetics to the prediction of nutrients losses in foods. Food Technology 36(10): 66–74.

Labuza, T.P. and Schmidl, M.K., 1985. Accelerated shelf-life testing of foods. Food and Bioprocess Technology 39(9): 57–62.

Lewicki, P.P., 2006. Design of hot air drying for better foods. Trends in Food Science and Technology 17(4): 153–163. https://doi. org/10.1016/j.tifs.2005.10.012

Lewis, W.K., 1921. The rate of drying of solid materials. Industrial & Engineering Chemistry 13(5): 427–432. https://doi.org/10.1021/ ie50137a021

López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E. and Di Scala, K., 2010. Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O Neil. Food and Bioprocess Technology 3(5): 772–777. https://doi.org/10.1007/s11947-009-0306-8

Luo, Q., Cai, Y., Yan, J., Sun, M. and Corke, H., 2004. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences 76: 137–149. https://doi.org/10.1016/j.lfs.2004.04.056

Marfil, P.H.M., Santos, E.M. and Telis, V.R.N., 2008. Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT—Food Science and Technology 41(9): 1642–1647. https:// doi.org/10.1016/j.lwt.2007.11.003

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F. and Veberic, R., 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science 77(10): 1064–1070. https://doi. org/10.1111/j.1750-3841.2012.02896.x

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Todorovic, B., Veberic, R., Stampar, F. and Ivancic, A., 2014. Investigation of anthocyanin profile of four elderberry species and inter-specific hybrids. Journal of Agricultural and Food Chemistry 62(24): 5573–5580. https://doi.org/10.1021/jf5011947

Moradi, M., Fallahi, M.A. and Mousavi Khaneghah, A., 2020. Kinetics and mathematical modeling of thin layer drying of mint leaves by a hot water recirculating solar dryer. Journal of Food Process Engineering 43(1): e13181. https://doi.org/10.1111/jfpe.13181

Oancea, A.M., Turturica, M., Bahrim, G., Râpeanu, G. and Stanciuc,  N., 2017. Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. LWT—Food Science and Technology 82: 139–146. https://doi.org/10.1016/j.lwt.2017.04.026

Önal, B., Adiletta, G., Crescitelli, A., Di Matteo, M. and Russo, P., 2019. Optimization of hot air drying temperature combined with pre-treatment to improve physicochemical and nutritional quality of “Annurca” apple. Food and Bioproducts Processing 115: 87–99. https://doi.org/10.1016/j.fbp.2019.03.002

Orikasa, T., Koide, S., Okamoto, S., Imaizumi, T., Muramatsu, Y., Takeda, J.I., Shiina, T. and Tagawa, A., 2014. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. Journal of Food Engineering 125: 51–58. https://doi. org/10.1016/j.jfoodeng.2013.10.027

Otag, M.R., 2015. Determination of some properties and resveratrol content of some grape varieties grown in Denizli Çal region during different ripening periods and after drying process. PhD thesis, Institute of Science, Pamukkale University, Turkey.

Page, G.E., 1949. Factors influencing the maximum rates of air-drying shelled corn in thin layers. Purdue e-Pubs, 1300089, Purdue University, IN.
Pedro, A.C., Maurer, J.B.B., Zawadzki-Baggio, S.F., Ávila, S., Maciel, G.M. and Haminiuk, C.W.I., 2018. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Industrial Crops and Products 112: 90–97. https://doi.org/10.1016/j.indcrop.2017.10.052

Ryley, J. and Kajda, P., 1994. Vitamins in thermal processing. Food Chemistry 49(2): 119–129. https://doi. org/10.1016/0308-8146(94)90148-1

Santos, P.H.S. and Silva, M.A., 2008. Retention of vitamin C in drying processes of fruits and vegetables—a review. Drying Technology 26(12): 1421–1437. https://doi.org/10.1080/07373930802458911

Saravacos, G.D. and Raouzeos, G.S., 1986. Diffusivity of moisture in air-drying of raisins. Drying 86(2): 487–491.

Sarpong, F., Yu, X., Zhou, C., Amenorfe, L.P., Bai, J., Wu, B. and Ma, H., 2018. The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa ssp.) slices using controlled humidity convective air-drying. Journal of Food Measurement and Characterization 12(3): 1935–1946. https://doi.org/10.1007/s11694-018-9809-1

Senadeera, W., Adilettta, G., Di Matteo, M. and Russo, P., 2014. Drying kinetics, quality changes and shrinkage of two grape varieties of Italy. Applied Mechanics and Materials 553: 362–366. https://doi.org/10.4028/www.scientific.net/AMM.553.362

Shan, X., Zhou, J., Ma, T. and Chai, Q., 2011. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. International Journal of Molecular Sciences 12(2): 1081–1088. https://doi.org/10.3390/ijms12021081

Shi, J., Pan, Z., McHugh, T., Wood, D., Hirschberg, E. and Olson,  D., 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT—Food Science and Technology 41(10): 1962–1972. https://doi.org/10.1016/j.lwt.2008.01.003

Singleton, V.L. and Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144–158.

Tepe, T.K. and Tepe, B., 2020. The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat Mass Transfer 56(11): 3047-3057. https://doi.org/10.1007/s00231-020-02907-9

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. and Byrne, D.H., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19(6–7): 669–675. https://doi.org/10.1016/j.jfca.2006.01.003

Tian, X.M., Wang, R., Zhang, B.K., Wang, C.L., Guo, H. and Zhang, S.J., 2013. Impact of Lycium barbarum polysaccharide and Danshensu on vascular endothelial growth factor in the process of retinal neovascularization of rabbit. International Journal of Ophthalmology 6: 59–61. https://doi.org/10.3980/j. issn.2222-3959.2013.01.12

Vega-Gálvez, A., Lemus-Mondaca, R., Tello-Ireland, C., Miranda,  M. and Yagnam, F., 2009. Kinetic study of convective drying of blueberry variety O’Neil (Vaccinium corymbosum). Chilean Journal of Agricultural Research 69(2): 171–178. https://doi.org/10.4067/S0718-58392009000200006

Wang, C.Y. and Singh, R.P., 1978. A single layer drying equation for rough rice. ASAE Paper No. 78-3001, ASAE, St. Joseph, MI.

Wang, J., Law, C., Mujumdar, A. and Xiao, H.W., 2017. The degradation mechanism and kinetics of vitamin C in fruits and vegetables during thermal processing. In: Nema, P.K., Kaur, B.P. and Mujumdar, (eds) A.S. Fundamentals & applications (Part III), pp 227-253. New India Publishing Agency, New Delhi, India.

Yousefi, A.R., Niakosari, M. and Moradi, M., 2013. Microwave-assisted hot air drying of papaya (Carica papaya L.) pretreated in osmotic solution. African Journal of Agricultural Research 8(25): 3229–3235. https://doi.org/10.5897/AJAR12.180

Zhang, Q., Chen, W., Zhao, J. and Xi, W. 2016. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chemistry 200: 230–236. https://doi.org/10.1016/j. foodchem.2016.01.046