Riboflavin removal by commercial bentonites and charcoals in white and red wine

Main Article Content

Veronica Vendramin
Simona Primerano
Giampiero Leserri
Giulio Paniccia
Simone Vincenzi


riboflaven , bbentoninites, charcoals, wine


Riboflavin (RF) represents one of the primary molecules undergoing photo-degradation in wine and its excited form act as intermediate in light-induced oxidation reactions responsible for the light-struck fault. A recent study revealed bentonites (BENs) and charcoals (CHAs) as the most promising fining agents for riboflavin removal in model wine. This work explored their potential on both white and red wine. Eleven BENs and eleven CHAs were compared. BENs exhibited a limited capacity, while decolouring carbons confirmed a great attitude to RF removal in white wine even at low dosages. Nevertheless, CHAs efficiency shows a sensible reduction in red wine.

Abstract 243 | PDF Downloads 140 XML Downloads 643 HTML Downloads 46


Achaerandio, I., Pachova, V., Güell, C. and López, F. 2001. Protein adsorption by bentonite in a white wine model solution: effect of protein molecular weight and ethanol concentration. Am J Enol Vitic. 52: 122–126.
Cataldi, T.R.I., Nardiello, D., Scrano, L. and Scopa, A. 2002. Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection. J Agric Food Chem. 50(23): 6643–6647. https://doi.org/10.1021/jf020212a
Da¸browski, A., Podko?cielny, P., Hubicki, Z. and Barczak, M. 2005. Adsorption of phenolic compounds by activated carbon  – a critical review. Chemosphere 58(8): 1049–1070. https://doi. org/10.1016/j.chemosphere.2004.09.067
Fracassetti, D., Gabrielli, M., Enncinas, J., Manara, M., Pellegrino, I. and Tirelli, A. 2017. Approaches to prevent the light-struck taste in white wine. Austral J Grape Wine Res. 23(3): 329–333. https://doi.org/10.1111/ajgw.12295
Fracassetti, D., Limbo, S., Pellegrino, L. and Tirelli, A. 2019. Light-induced reactions of methionine and riboflavin in model wine: effects of hydrolysable tannins and sulfur dioxide. Food Chem. 298: 124952. https://doi.org/10.1016/j.foodchem.2019.124952
Gogoi, P., Dutta, N.N. and Rao, P.G. 2010. Adsorption of catechin from aqueous solutions on polymeric resins and activated car-bon. Indian J Chem Technol. 17(5): 337–345.
Grant-Preece, P., Barril, C., Schmidtke, L.M., Scollary, G.R. and Clark, A.C. 2017. Light-induced changes in bottled white wine and underlying photochemical mechanisms. Crit Rev Food Sci Nutr. 57(4): 743–754. https://doi.org/10.1080/10408398.2014.919246
Jackson, R.S. 2011. Shelf life of wine. In: D. Kilcast and P. Subramaniam (Eds.) Food and Beverage Stability and Shelf Life. Woodhead, Cambridge, pp. 540–570 https://doi.org/10.1533/ 9780857092540.3.540
Jönsson, B., Åkesson, T., Jönsson, B., Meehdi, S., Janiak, J. and Wallenberg, R. 2009. Structure and forces in bentonite MX-80. SKB Technical Report, CM Gruppen, Stockholm, Sweden.
Kasimova, G.K., Astanov, S.K., Kurtaliev, E.N. and Nizomov, N.N. 2019. Structure of self-assembled riboflavin molecules in solutions. J Mol Struc. 1185: 107–111. https://doi.org/10.1016/j. molstruc.2019.02.084
Kim, M., Yoon, S.H., Jung, M. and Choe, E. 2010. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically pro-duced singlet oxygen by riboflavin. New Biotechnol. 27(4): 435– 439. https://doi.org/10.1016/j.nbt.2010.01.003
Kisler, J.M., Antje, D., Stevens, G.W. and Connor, A.J. 2001. Separation of biological molecules using mesoporous molecular sieves. Microporous Mesoporous Mater. 44–45: 769–774. https://doi.org/10.1016/S1387-1811(01)00259-1.
Lagunes, I., Vázquez-Ortega, F. and Trigos, Á. 2017. Singlet oxygen detection using red wine extracts as photosensitizers. J Food Sci. 82(9): 2051–2055. https://doi.org/10.1111/1750-3841.13815
Lambri, M., Dordoni, R., Silva, A. and de Faveri, D.M. 2012. Comparing the impact of bentonite addition for both must clarification and wine fining on the chemical profile of wine from Chambave Muscat grapes. Int J Food Sci. Technol. 47(1): 1–12. https://doi.org/10.1111/j.1365-2621.2011.02800.x
Lira, E., Rodríguez-Bencomo, J.J., Salazar, F.N., Orriols, I., Fornos, D. and López, F. 2015. Impact of bentonite additions during vinifi-cation on protein stability and volatile compounds of Albariño wines. J. Agric Food Chem. 63(11): 3004–3011. https://doi. org/10.1021/acs.jafc.5b00993
Lisanti, M.T., Gambuti, A., Genovese, A., Piombino, P. and Moio, L. 2017. Treatment by fining agents of red wine affected by phenolic off-odour. Eur. Food Res. Technol. 243(3): 501–510. https:// doi.org/10.1007/s00217-016-2763-4
Lisanti, M.T., Piombino, P., Gambuti, A., Genovese, A., Siani, V.L. and Moio, L. 2008. Analytical evaluation of remedial treatments for red and white wines contaminated by volatile phenols. Bulletin de l’OIV (Organisation Internationale de la Vigne et du Vin), 81: 45–55.
Luckham, P.F. and Rossi, S. 1999. Colloidal and rheological properties of bentonite suspensions. Adv. Colloid Interface Sci. 82(1): 43–92. https://doi.org/10.1016/S0001-8686(99)00005-6
Marangon, M., Van Sluyter, S.C., Neilson, K.A., Chan, C., Haynes, P.A., Waters, E.J. and Falconer, R.J. 2011. Roles of grape thaumatin-like protein and chitinase in white wine haze formation. J. Agric. Food Chem. 59(2): 733–740. https://doi.org/10.1021/ jf1038234
Mattivi, F., Monetti, A., Vrhovšek, U., Tonon, D. and Andrés-Lacueva, C. 2000. High-performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light. J. Chromatogr A. 888:121– 127. https://doi.org/10.1016/S0021-9673(00)00561-6
Ournac, A. 1968. Riboflavine pendant la fermentation du jus de raisin et la conservation du vin sur lies. Annales de Technol. Agricole. 17: 67–75.
Pilcher, U. 1996. Analisi della Riboflavina nei vini bianchi e influenza della sua concentrazione. L’enotecnico. 32: 57–62.
Ribéreau-Gayon, P., Glories, Y., Maujean, A. and Dubourdieu, D. 2006. The concept of clarity and colloidal phenomena. In: P. Ribéreau-Gayon, Y. Glories, A. Maujean and D. Dubourdieu (Eds.) Handbook of Enology The Chemistry of Wine and Stabilization and Treatments (Vol. 2). John Wiley, New York, NY, pp. 285–300. https://doi.org/10.1002/0470010398.ch9
Sarmento, M.R., Oliveira, J.C. and Boulton, R.B. 2000. Selection of low swelling materials for protein adsorption from white wines. Int J Food Sci Technol. 35(1), 41–47. https://doi. org/10.1046/j.1365-2621.2000.00340.x
Sheraz, M.A., Kazi, S.H., Ahmed, S., Anwar, Z. and Ahmad, I. 2014. Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem. 10, 1999–2012. https://doi.org/10.3762/bjoc.10.208
Silva, E., Barrias, P., Fuentes-Lemus, E., Tirapegui, C., Aspee, A., Carroll, L., Davies M.J. and.López-Alarcón, C. 2019. Riboflavin-induced type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Free Radical Biol Med. 131, 133–143. https://doi.org/10.1016/j.freeradbiomed.2018.11.026
The International Organization of Vine and Wine (OIV). 2007. Carbon (oenological). OENO 7/2007. Available online: https:// www.oiv.int/public/medias/4063/e-coei-1-charbo.pdf (accessed on 20.09.19).
The International Organization of Vine and Wine (OIV). 2011. Bentonites. OENO 11/2003, OENO 441/2011. Available online: https://www.oiv.int/public/medias/4055/e-coei-1-benton.pdf (accessed on 05.06.19).
Tran, H.N., Wang, Y.F., You, S.J. and Chao, H.P. 2017. Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of ?–? interactions. Process Safety Environ. Protection. 107, 168–180. https://doi.org/10.1016/j. psep.2017.02.010
Yahya, M.A., Al-Qodah, Z. and Ngah, C.W.Z. 2015. Agricultural bio-waste materials as potential sustainable precursors used for acti-vated carbon production: a review. Renewable Sustain. Energy Rev. 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051