CHARACTERIZATION OF LIPID SUBSTANCES OF ROSE HIP SEEDS AS A POTENTIAL SOURCE OF FUNCTIONAL COMPONENTS: A REVIEW

Main Article Content

C. MANNOZZI
R. FOLIGNI
A. SCALISE
M. MOZZON

Keywords

rosehip oil, oil extraction, fatty acids, unsaponifiable matter components

Abstract

Functional foods receive the greatest attention for nutritional needs of specific consumers. The rose hip fruit, besides carotenoids and polyphenols, are also good sources of lipid substances (fatty acids, sterols and tocopherols), which can be used as functional foods instead of being discarded as waste. The aim of this review is to present an overview of the lipid characterization of rosehip seeds as affected also by the oil extraction procedure.


The rosehip seeds oil is proven to be rich in polyunsaturated fatty acid (PUFA), sterols and tocopherols, which provide specific biological activities (anti-inflammatory, anti-obesity, antioxidant, anti-diabetic activity). In particular, the oil content of rose hip seeds ranges from 5 to 18 % and is composed of unsaturated fatty acids such as linoleic acid (36-55 %) which is the most abundant one, linolenic (17-27 %) and oleic acid (15-22 %) respectively. As for the sterols, its content ranges around 5 g/kg constituting predominantly B-Sitosterol, whereas, the tocopherols amount to around 1 g/kg with Y-tocopherol being the most abundant.

Abstract 198 | pdf Downloads 143

References

Alvarez-Sala A., Blanco-Morales V., Cilla A., Garcia-Llatas G., Sánchez-Siles L.M., Barberá R. and Lagarda M.J. 2018. Safe intake of a plant sterol-enriched beverage with milk fat globule membrane: Bioaccessibility of sterol oxides during storage. Journal of Food Composition and Analysis. 68:111-117. DOI: doi.org/10.1016/j.jfca.2017.03.011

Amarowicz R. and Pegg R.B. 2019. Natural antioxidants of plant origin. In: Advances in Food and Nutrition Research. Academic Press Inc. 90:1-81 DOI: doi.org/10.1016/bs.afnr.2019.02.011

Anwar F., Przybylski R., Rudzinska M., Gruczynska E. and Bain J. 2008. Fatty acid, tocopherol and sterol compositions of Canadian prairie fruit seed lipids. Journal of the American Oil Chemists’ Society 85(10):953-959. DOI: doi.org/10.1007/s11746-008-1276-0

Barriuso B., Astiasarán I. and Ansorena D. 2016. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment. Food Chemistry. 196:451-458. DOI: doi.org/10.1016/j.foodchem.2015.09.074

Barros L., Carvalho A.M. and Ferreira I.C.F.R. 2011. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International 44(7):2233-2236. DOI: doi.org/10.1016/j.foodres.2010.10.005

Bhave A., Schulzova V., Chmelarova H., Mrnka L. and Hajslova J. 2017. Assessment of rosehips based on the content of their biologically active compounds. Journal of Food and Drug Analysis 25(3):681-690. DOI: doi.org/10.1016/j.jfda.2016.12.019

Çelik F., Balta F., Ercisli S., Kazankaya A. and Javidipour I. 2010. Seed oil profiles of five rose hip species (Rosaspp.) from Hakkâri, Turkey. Journal of Food, Agriculture & Environment 8(2):482-484.

Concha J., Soto C., Chamy R. and Zúñiga M. E. 2006. Effect of rosehip extraction process on oil and defatted meal physicochemical properties. Journal of the American Oil Chemists’ Society DOI: doi.org/10.1007/s11746-006-5013-2

Dabrowska M., Maciejczyk E. and Kalemba D. 2019a. Rose Hip Seed Oil: Methods of Extraction and Chemical Composition. European Journal of Lipid Science and Technology. DOI: doi.org/10.1002/ejlt.201800440

Dassoff E.S. and Li Y.O. 2019. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction. Trends in Food Science and Technology 86:492-501. DOI: doi.org/10.1016/j.tifs.2019.03.001

Deliorman Orhan D., Harteviog lu A., Kupeli E. and Yesilada E. 2007. In vivo antiinflammatory and antinociceptive avtivity of the crude extract and fractions from RosacaninaL. fruits. Journal of Ethnopharmacology 112:394-400. DOI: doi.org/10.1016/j.jep.2007.03.029

del Valle J.M., Rivera O., Mattea M., Ruetsch L., Daghero J. and Flores A. 2004. Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. The Journal of supercritical fluids 31(2):159-174. DOI: doi.org/10.1016/j.supflu.2003.11.005

Demir N., Yildiz O., Alpaslan M. and Hayaloglu A.A. 2014. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT -Food Science and Technology 57(1):126-133. DOI: doi.org/10.1016/j.lwt.2013.12.038

Du H., Zhang X., Zhang R., Zhang L., Yu D. and Jiang L. 2017. Extraction and the fatty acid profile of Rosa acicularis seed oil. Journal of Oleo Science 66(12):1301-1310. DOI: doi.org/10.5650/jos.ess17006

Fascella G., D’Angiolillo F., Mammano M.M., Amenta M., Romeo F.V., Rapisarda P. and Ballistreri G. 2019. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chemistry. 289:56-64. DOI: doi.org/10.1016/j.foodchem.2019.02.127

Fromm M., Bayha S., Carle R. and Kammerer D.R. 2012. Comparison of fatty acid profiles and contents of seed oils recovered from dessert and cider apples and further Rosaceous plants. European Food Research and Technology. 234:1033-1041. DOI: doi.org/10.1007/s00217-012-1709-8

Fromm M., Bayha S., Kammerer D.R. and Carle R. 2012. Identification and Quantitation of Carotenoids and Tocopherols in Seed Oils Recovered from Different Rosaceae Species. J. Agric. Food Chem. 60 (43):10733-10742. DOI: doi.org/10.1021/jf3028446

Galanakis C.M. 2012. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology 26(2):68-87. DOI: doi.org/10.1016/j.tifs.2012.03.003

Grajzer M., Prescha A., Korzonek K., Wojakowska A., Dziadas M., Kulma A. and Grajeta H. 2015. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chemistry 188:459-466. DOI: doi.org/10.1016/j.foodchem.2015.05.034

Guimarães R., Barros L., Dueñas M., Carvalho A.M., Queiroz M.J.R., Santos-Buelga C. and Ferreira I.C. 2013. Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chemistry 141(4):3721-3730. DOI: doi.org/10.1016/j.foodchem.2013.06.071

Günes M., Dölek Ü., Elmastas M. and Karagöz F. 2017. Effects of Harvest Times on the Fatty Acids Composition of Rose Hip (Rosa sp.) Seeds. Turkish Journal of Agriculture-Food Science and Technology 5(4): 321-325. Retrieved from www.agrifoodscience.com. DOI: doi.org/10.24925/turjaf.v5i4.321-325.1064

Hernandez E. M. 2015. Specialty Oils: Functional and Nutraceutical Properties. Functional and Nutraceutical Properties. In Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health (pp. 69-101). Elsevier Inc. DOI: doi.org/10.1016/B978-1-78242-247-1.00004-1

Ilyasoglu H. 2014. Characterization of rosehip (Rosa canina L.) seed and seed oil. International Journal of Food Properties. 17(7):1591-1598. DOI: doi.org/10.1080/10942912.2013.777075

Jahongir H., Miansong Z., Amankeldi I., Yu Z. and Changheng L. 2019. The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil. Journal of King Saud University -Engineering Sciences. 31(2):140-143. DOI: doi.org/10.1016/j.jksues.2018.04.004

Kazaz S., Baydar H. and Erbas S. 2009. Variations in chemical compositions of Rosa damascena Mill, and Rosa canina L. Fruits. Czech Journal of Food Sciences 27(3):178-184. DOI: doi.org/10.17221/5/2009-CJFS

Koczka N., Stefanovits-Bányai É. and Ombódi A. 2018. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 5(3):84. DOI: doi.org/10.3390/medicines5030084

Machmudah S., Kawahito Y., Sasaki M. and Goto M. 2007, Supercritical CO2 extraction of rosehip seed oil: Fatty acids composition and process optimization. The Journal of Supercritical Fluids 41(3):421-428. DOI: doi.org/10.1016/j.supflu.2006.12.011

Mozzon M., Pacetti D., Frega N.G. and Lucci P. 2015. Crude palm oil from interspecific hybrid Elaeis oleifera× E. guineensis: alcoholic constituents of unsaponifiable matter. Journal of the American Oil Chemists' Society 92(5):717-724. DOI: doi.org/10.1007/s11746-015-2628-1

Nadpal J.D., Lesjak M.M., Šibul F.S., Anackov G.T., Cetojevic-Simin D.D., Mimica-Dukic N.M. and Beara I.N. 2016. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chemistry 192:907-914. DOI: doi.org/10.1016/j.foodchem.2015.07.089

Özcan M. 2002. Nutrient composition of rose (Rosa Canina L.) seed and oils. Journal of Medicinal Food 5(3):137-140. DOI: doi.org/10.1089/10966200260398161

Patel S. 2015. Emerging bioresources with nutraceutical and pharmaceutical prospects. Emerging Bioresources with Nutraceutical and Pharmaceutical Prospects. DOI: doi.org/10.1007/978-3-319-12847-4

Patel S. 2017. Rose hip as an underutilized functional food: Evidence-based review. Trends in Food Science and Technology. 63:29-38. DOI: doi.org/10.1016/j.tifs.2017.03.001

Prescha A., Grajzer M., Dedyk M. and GrajetaH. 2014. The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists’ Society 91(8):1291-1301. DOI: doi.org/10.1007/s11746-014-2479-1

Rein E. Kharazmi A. and Winther K. 2004. A herbal remedy, Hyben Vital (stand. powder of a subspecies of Rosa canina fruits), reduces pain and improves general wellbeing in patients with osteoarthritis-a double-blind, placebo-controlled, randomised trial. Phytomedicine 11:383-391 DOI: doi.org/10.1016/j.phymed.2004.01.001

Rosu C.M., Manzu C., Olteanu Z., Oprica L., Oprea A., Ciornea E. and Zamfirache M.M. 2011. Several fruit characteristics of Rosa sp. genotypes from the northeastern region of Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):203-208. DOI: doi.org/10.15835/nbha3926333

Salgin U., Salgin S., Ekici D.D. and UludaL· G. 2016. Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. The Journal of Supercritical Fluids 118, 194-202. DOI: doi.org/10.1016/j.supflu.2016.08.011

Szentmihályi K., Vinkler P., Lakatos B., Illés V. and Then M. 2002. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresource Technology 82(2):195-201. DOI: doi.org/10.1016/S0960-8524(01)00161-4

Tylewicz U., Mannozzi C., Romani S., Castagnini J.M., Samborska K., Rocculi P. and Dalla Rosa M. 2019. Chemical and physicochemical properties of semi-dried organic strawberries enriched with bilberry juice-based solution. LWT. 114:108377. DOI: doi.org/10.1016/j.lwt.2019.108377

Winther K., Hansen A.S.V. and Campbell-TofteJ. 2016. Bioactive ingredients of rose hips (Rosa canina L) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Botanics 2016(6):11-13. DOI: doi.org/10.2147/BTAT.S91385

Yilmaz N., Beyhan O., Gerçekçioglu R. and Kalayci Z. 2011. Determination of fatty acid composition in seed oils of some important berry species and genotypes grown in Tokat Province of Turkey. African Journal of Biotechnology 10(41):8070-8073. DOI: doi.org/10.5897/AJB11.951

Zlatanov M.D. 1999. Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. Journal of the Science of Food and Agriculture 79(12):1620-1624.