Main Article Content



antioxidant compounds, carotenoids, carrot, colourproperties, sugars


Carrot (Daucus carota L.) is the most widely consumed root vegetable since it is an important source of nutritional compounds, mainly antioxidants and sugars. In Tunisia, despite the genetic diversity observed in carrot germplasm, including landraces and wild relatives, no research has been conducted on the biochemical composition of carrot. Thus, this study aims to analyse carotenoids, soluble sugars, total phenols, total flavonoids and colour properties of 14 carrot landraces, in order to determine the diversity among them and evaluate the relationships among their biochemical contents. The main carotenoids identified were a-carotene, B-carotene and lutein. Orange carrots were richer in B-carotene and a-carotene than yellow carrots. The major sugars were sucrose, glucose, fructose and galactose. Significant differences were observed among the Tunisian carrot landraces with respect to their biochemical composition and colour characteristics. Total carotenoids and total sugars ranged from 155.74 to 511.44 ug/g of dw and from 368.77 to 546.79 mg/g of dw, respectively. Total phenols and total flavonoids varied from 24.13 to 41.39 mg GAE/100 g of dw and from 16.51 to 24.85 ug CE/100 g of dw, respectively. Significant, positive and negative correlations were found among the measured parameters. A principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were performed to classify the Tunisian carrot landraces on the basis of colour properties and biochemical compounds. The PCA divided the landraces into four main groups and AHC classified them into two major clusters. The Tunisian carrot landraces were found to be rich in bioactive compounds; they could be good candidates for future breeding programs.

Abstract 122 | pdf Downloads 100


Alasalvar C., Grigor J.M., Zhang D., Quantick P.C. and Shahidi F. 2001. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food. Chem. 49(3):1410-1416.

Bahorun T., Aumjaud E., Ramphul H., Rycha M., Luximon-Ramma A., Trotin F. and Aruoma O.I. 2003. Phenolic constituents and antioxidant capacities of Crataegus monogyna(Hawthorn) callus extracts. Nahrung/Food 47(3):191-198.

Bahorun T., Luximon-Ramma A., Crozier A. and Aruoma OI. 2004. Total phenol, flavonoid, proanthocyanidin and Vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food. Agric. 84:1553-1561.

Bajaj K.l., Kaur G. and Sukhija B.S. 1980. Chemical composition and some plant characteristics in relation to quality of some promising cultivars of carrot (Daucus carotaL.). Qual. Plant. Plant. Foods. Hum. Nutr. 30(2):97-107.

Banga O., De Bruyn J.W. and Smeets L. 1955. Selection of carrots for carotene content. Euphytica 4:183-189.

Banga O. 1957. Origin of the European cultivated carrot. Euphytica 6:54-63.

Banga O. 1963. Origin and domestication of the western cultivated carrot. Genet. Agrar. 17:357-370.

Baranski R., Maksylewicz-Kaul A., Kamiñska I., Leja M., Schulz-Witte J., Schulz H., Nothnagel T. and Carle R. 2010. Characterisation of carrots of various root colour. Ecol. Chem. Eng. a 17:1053-1060.

Baranski R., Allender C. and Klimek-Chodacka M. 2012.Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food. Res. Int. 47(2):182-87.

Ben Amor J., Mezghani N., Spooner D., Hamdi K., Ghezal A. and Tarchoun N. 2019. Assessment of phenotypic diversity in Tunisian carrot (Daucus carotasubsp. sativus) landraces. IJAEB 4(4):75-91.

Böhm V. 2001. Use of column temperature to optimize carotenoid isomer separation by C30 high performance liquid chromatography. J. Sep. Sci. 24:955-959.

Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56(11):317-333.

Cazor A., Deborde C., Moing A., Rolin D. and This H. 2006. Sucrose, glucose and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J. Agric. Food. Chem. 54(13):4681-4686.

Chaux C. and Foury C. 1994. “Productions légumières- Tome 2: Légumes feuilles, tiges, fleurs, racines, bulbes”. Edition Tec & Doc, Paris.

Chen B.H. and Tang Y.C. 1998. Processing and stability of carotenoid powder from carrot pulp waste. J. Agric. Food. Chem. 46(6):2312-2318.

Cheng J.T., Hsu F.L. and Chen H.F. 1993. Antihypertensive principles from the leaves of Melastoma candidum. Planta. Med 59(5):405-406.

Chu Y.F., Sun J., Wu X. and Liu R.H. 2002. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food. Chem. 50(23):6910-6916.

Karabacak E.C. and Karabacak H. 2019. Factors affecting carotenoid amount in carrots (Daucus carota). Ecological Life Sciences (NWSAELS). 14:29-39.

Dewanto V., Wu X., Adom K.K. and Liu R.H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food. Chem. 50(10):3010-14.

DGPA. 2019. Annual report of General Directorate for Agricultural Production. The Ministry of Agriculture, Tunisia.

Dolores Rodriguez-Sevilla M., Villanueva-Suaârez M.J. and Redondo-Cuenca A. 1999. Effects of processing conditions on soluble sugars content of carrot, beetroot and turnip. Food. Chem. 66:81-85.

Evers A.M, 1989. Effects of different fertilization practises on the carotene content of carrot. J. Agric. Sci. in Finland 61: 7-14.

Fikselová M., Marecek J. and Mellen M. 2010. Carotenes content in carrot roots (Daucus carotaL.) as affected by cultivation and storage. Veg. Crop. Res. Bull 73:47-54.

Gonçalves E.M., Pinheiro J., Abreu M., Brandão T.R.S. and Silva CL.M. 2010. Carrot (Daucus carota L.) eroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J. Food. Eng. 97(4):574-581.

Gryglewski R.J., Korbut R., Robak J. and Sweis J. 1987. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol. 36:317-322.

Grassmann J., Schnitzler W.H. and Habegger R. 2007. Evaluation of different coloured carrot cultivars on antioxidative capacity based on their carotenoid and phenolic contents. Int. J. Food. Sci. Nutr. 58(8):603-611.

Hart D.J. and Scott K.J. 1995. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food. Chem. 54(1):101-111.

Hogstad S., Risvik E. and Steinsholt K. 1997. Sensory quality and chemical composition in carrots: a multivariate study. Acta. Agric. Scand., Sect. B, Soil. Plant. Sci. 47:253-264.

Horvitz M.A., Simon P.W. and Tanumihardjo S.A. 2004. Lycopene and ?-Carotene are bioavailable from lycopene ‘red’ carrots in humans. Eur. J. Clin. Nutr. 58(5):803-811.

Itle R.A., Kabelka E.A. 2009. Correlation between L*a*b* color space values and carotenoid content in pumpkins and squash (Cucurbita Spp.). HortScience 44(3):633-637.

Jourdan M., Gagne S., Dubois-Laurent C., Maghraoui M., Huet S., Suel A., Hamama L.,Briard M., Peltier D. and Geoffriau E. 2015. Carotenoid content and root color of cultivated carrot: A candidate-gene association study using an original broad unstructured population. Plos One 10(1):e0116674.

Koley T.K., Singh S., Khemariya P., Sarkar A., Kaur C., Chaurasia S.N.S. and Naik P.S. 2014. Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food. Res. Int. 60:76-85.

Korolev A.V., Tomos A.D., Bowtell R. and Farrar J.F. 2000a. Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J. Exp. Bot. 51(344):567-577.

Korolev A.V., Tomos A.D. and Farrar J.F. 2000b.The trans-tissue pathway and chemical fate of 14C photoassimilate in carrot taproot. New. Phytol. 147(2):299-306.

Le Floc’h E., Boulos L. and Vela E. 2010. “Catalogue synonymique commenté de la flore de Tunisie”. Banque Nationale des Gènes de la Tunisie, Tunis.

Leja M., Kaminska I., Kramer M., Maksylewicz-Kaul A., Kammerer D., Carle R. and Baranski R. 2013. The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant. Food. Hum. Nutr. 68(2):163-170.

Martín-Diana A.B., Rico D., Frías J.M., Barat J.M., Henehan G.T.M. and Barry-Ryan C. 2007. Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: A review.Trends. Food. Sci. Technol. 18:210-218.

Matejková J. and Petríková K. 2010. Variation in content of carotenoids and vitamin C in carrots. Not. Sci. Biol. 2(4):88-91.

Meléndez-Martínez A.J., Vicario I.M. and Heredia F.J. 2005. Instrumental measurement of orange juice colour: A review. J. Sci. Food. Agric. 85:894-901.

Melo E.A., Lima V.L.A.G., Caetano A.C.S. and Leal F.L.L. 2006. Polyphenol, ascorbic acid and total carotenoid contents in common fruits and vegetables. Braz. J. Food. Technol.9:89-94.

Mezghani N., Zaouali I., Bel Amri W., Rouz S., Simon P.W., Hannachi C.H., Gharbi Z., Neffati M., Bouzbida B. and Spooner D.M. 2014. Fruit morphological descriptors as a tool for discrimination of Daucus L. germplasm. Genet. Resour. Crop. Evol. 61:499-510.

Mezghani N., Ben Amor J., Spooner D.M., Boubaker H., Najmi A.M., Rouz S., Hannachi C.H., Neffati M. and Tarchoun N. 2017. Multivariate analysis of morphological diversity among closely related Daucus species and subspecies in Tunisia. Genet. Resour. Crop. Evol. 64:2145-2159.

Mezghani N., Ruess H., Tarchoun N., Ben Amor J., Simon P.W. and Spooner D.M. 2018. Genotyping by sequencing reveals the origin of the Tunisian relatives of cultivated carrot (Daucus carota). Genet. Resour. Crop. Evol.65(5).

Nicolle C., Simon G., Rock E., Amouroux P. and Rémésy C. 2004. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J. Am. Soc. Hortic. Sci. 129(4):523-529.

Nilsson T.1987. Carbohydrate composition during long-term storage of carrots as influenced by the time of harvest. J. Hort. Sci. 62:191-203.

Nomura K., Ogasawara Y., Vemukoi H. and Yoshida M. 1995. Change of sugar content in chestnut during low temperature storage. Acta. Hortic. 398:265-276.

Nookaraju A., Upadhyaya C.P., Pandey S.K., Young K.E., Hong S.J., Park S.K. and Park S.W. 2010. Molecular approaches for enhancing sweetness in fruits and vegetables. Sci. Hortic.127(1):1-15.

Pathare P.B., Opara U.L. and Al-Julanda Al-Said F. 2013. Colour measurement and analysis in fresh and processed foods: A Review. Food. Bioprocess. Tech. 6(1):36-60.

Phan C.T. and Hsu H. 1973. Physical and chemical changes occurring in the carrot root during growth. Can. J. Plant. Sci 53(3):629-634.

Rakcejeva T., Augspole I., Dukalska L. and Dimins F. 2012. Chemical composition of variety ‘Nante’ hybrid carrots cultivated in latvia. Int. J. Biol., Biomol., Agr., Food. Biotechnol. Eng 6(4).

Reeves M.J. 1987. Re-evaluation of Capsicum color data. J. Food. Sci. 52(4):1047-49.

Rico D., Martín-Diana A.B., Barat J.M. and Barry-Ryan C. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 18:373-386.

Rodriguez-Sevilla M.D., Villanueva-Suarez M.J. and Redondo-Cuena A. 1999. Effects of processing conditions on soluble sugars content of carrot, beetroot and turnip. Food. Chem. 66:81-85.

Rosenfeld H.J., Baardseth P. and Skrede G. 1997. Evaluation of carrot varieties for production of deep fried carrot chips—IV. The influence of growing environment on carrot raw material. Food. Res. Int. 30(8):611-18.

Rosenfeld H.J., Samuelsen R.T. and Lea P. 1998. The effect of temperature on sensory quality, chemical composition and growth of carrots (DaucuscarotaL.) I. Constant diurnal temperature. J. Hort. Sci. Biotechnol. 73:275-288.

Rozek S., Leja M. and Wojciechowska R. 2000. Effect of differentiated nitrogen fertilization on changes of certain compounds in stored carrot roots. Folia. Hort 12(2):21-34.

Rubatzky V.E., Quiros C.F. and Simon P.W. 1999. “Carrots and related vegetable Umbelliferae”. CABI Publishing. Wallingford, U.K.

Ruiz D., Egea J., Tomás-Barberán F.A., Gil Mi. 2005. Carotenoids from new apricot (Prunus ArmeniacaL.) varieties and their relationship with flesh and skin color. J.Agric. Food. Chem. 53(16):6368-74.

Saini R.K., Shetty N.P., Prakash M. and Giridhar P. 2014. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food. Sci. Technol. 51(9):2176-2182.

Saini R.K., Nile S.H. and Park S.W. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food. Res. Int. 76:735-750.

Sekoli M.M.S., Pretorius J.C. and Coetzer G.M. 2016. Sugar and B-carotene accumulation in carrot (Daucus carota L.) tap roots as influenced by fertilization and bio-stimulant application under greenhouse conditions. GJAR 4(2):18-31.

Sharangi A.B. and Paria N.C. 1997. Carotene content of carrot root as influenced by different levels of nitrogen and potassium. Indian. Agric. 41:193-196.

Simon P.W., Peterson C.E. and Lindsay R.C. 1980a. Correlations between sensory and objective parameters of carrot flavor. J. Agric. Food Chem. 28:559-562.

Simon P.W., Peterson C.E. and Lindsay R.C. 1980b. Genetic and environmental influences on carrot flavor. J. Am. Soc. Hortic. Sci. 105:416-420.

Simon P.W., Peterson C.E. and Lindsay R.C. 1982. Genotype, soil, and climate effects on sensory and objective components of carrot flavor. J. Am. Soc. Hortic. Sci.107:644-648.

Simon PW. 1985. Carrot flavor: Effects of genotype, growing conditions, storage, and processing. Ch. 11. In“Evaluation of Quality of Fruits and Vegetables”. Pattee H.E. (Ed.), p. 315-328. AVI Publishing, Wesport, CT.

Simon P.W. 2000. Domestication, historical development, and modern breeding of carrot. Plant. Breed. Rev 19:157-190.

Simpson K.L. 1983. Relative value of carotenoids as precursors of Vitamin A. Proc. Nutr. Soc. 42(1):7-17.

Singh B.K, Koley T.K., Maurya A., Singh P.M. and Singh B. 2018. Phytochemical and antioxidative potential of orange, red, yellow, rainbow and black coloured tropical carrots (Daucus carota subsp. sativus Schubl. & Martens). Physiol. Mol. Biol. Plants 24(5):899-907.

Singleton V.L. and Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144-158.

Smolen S. and Sady W. 2007. The effect of nitrogen fertilizer and foliar nutrition on the content of carotenoids, soluble sugars and phenolic compounds in carrot. Rocz. Ak. Rol 41:619-623.

Smolen S. and Sady W. 2009. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Sci. Hortic.120:315-324.

Stagos D. 2020. Antioxidant activity of polyphenolic plant extracts. Antioxidants 9 (1):1-7.

Stolarczyk J. and Janick J. 2011. Carrot: history and iconography. Chron. Horticult 51(2):13-18.

Sun M. and Temelli F. 2006. Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J. Supercrit. Fluid 37(3):397-408.

Sun T., Simon P.W. and Tanumihardjo S.A. 2009. Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (DaucuscarotaL.) of various colors. J. Agric. Food. Chem. 57(10):4142-4147.

Suojala T. 2000. Variation in sugar content and composition of carrot storage roots at harvest and during storage. Sci. Hortic.85:1-19.

Surles R.L., Weng N., Simon P.W. and Tanumihardjo S.A. 2004. Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J.Agric. Food. Chem. 52(11):3417-3421.

Tan B.L. and Norhaizan M.E. 2019. Carotenoids: How effective are they to prevent age-related diseases? Molecules 24 (9):1-23.

Yoo K.S., Bang H., Lee E.J., Crosby K. and Patil B.S. 2012. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic Analysis. Hort. Environ. Biotechnol. 53(6): 552-560.

Zielinska M. and Markowski M. 2012. Color characteristics of carrots: effect of drying and rehydration. Int. J. Food. P.15(2):450-466.