Main Article Content



Gubbeen, smear-ripened cheese, proteolysis, surface, mass spectrometry


This study focused on proteolysis in an  Irish farmhouse smear-ripened cheese by serial slicing (0.41 mm/slice) the first 2 cm from surface towards the centre of the cheese. Urea-polyacrylamide gel electrophoretograms confirmed higher proteolysis in the outer layers than at the centre. Free amino acid  (FAA) analysis confirmed  decrease in proteolytic activity from  surface to centre. Peptides produced at depths  0.41 mm and 20.5 mm were 720 and 427 from ?s1-casein; 691 and 337 from ?s2-casein; 807 and 453 from ?-casein; 180 and 109 from ?-casein. The study confirms higher proteolytic activity at surface due to action of enzymes of the smear microbiota, than at the centre of cheese and identified the agents responsible for production of many peptides.

Abstract 101 | pdf Downloads 101


Ades G.L. and Cone J.F. 1969. Proteolytic activity of Brevibaeterium linens during ripening of Trappisttype cheese. Journal of Dairy Science 52:957-961. DOI: (69)86674-9.

Andrews A. T., 1983. Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research 50:45-55. DOI:

Ardö Y., Mcsweeney P.L.H., Magboul A.A.A., Upadhyay V.K. and Fox P.F.2017. Biochemistry of cheese ripening: Proteolysis. Cheese: Chemistry, Physics and Microbiology. 4th Edn., P.L.M.McSweeney, P.F.Fox, P.D.Cotter and D.W.Everett, Elsevier Academic Press, London, UK; Vol. 1,445-482.

Baur C., Krewinkel M., Kranz B., et al., 2015. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal 49:23-29. DOI:

Bikash C., Ghosh T., Sienkiewicz T. and Krenkel K. 2000. Brevibacterium linens-A useful enzyme producer for cheese: A review. Milchwissenschaft. 55:628-632.

Blakesley R.W. and Boezi J.A. 1977. A new staining technique for proteins in polyacrylamide gels using Coomassie Brilliant Blue G250. Analytical Biochemistry 82:580-582. DOI:

Bockelmann W. 2002. Development of defined surface starter cultures for the ripening of smear cheeses. International Dairy Journal 12:123-131. DOI: 10.1016/S0958-6946(01)00152-2.

Bora N., Vancanneyt M., Gelsomino R., Swings J., Brennan N., Cogan T.M., Larpin S., Desmasures N., Lechner F.E., Kroppenstedt R.M., Ward A.C. and Goodfellow M., 2007. Agrococcus casei sp. nov., isolated from the surfaces of smear-ripened cheeses. International Journal of Systematic and Evolutionary Microbiology 57:92-97.DOI:

Bora N., Vancanneyt M., Gelsomino R., Snauwaert C., Swings J., Jones A.L., Ward A.C., Chamba J.-F., Kroppenstedt R.M., Schumann, P. and Goodfellow M., 2008. Mycetocola reblochoni sp. nov., isolated from the surface microbial flora of Reblochon cheese. International Journal of Systematic and Evolutionary Microbiology 58:2687-2693.DOI:

Breen E.D., Fox P.F. and Mcsweeney P.L.H. 1995. Fractionation of peptides in a 10 kDa ultrafiltration retentate of a water-soluble extract of Cheddar cheese. International Journal of Food Science 7:211-220.

Brennan N.M., Brown R., Goodfellow M., Ward A.C., Beresford T.P., Simpson P.J., Fox P.F. and Cogan T.M. 2001. Corynebacterium mooreparkense sp. nov., and Corynebacterium casei sp. nov.isolated from the surface of a smear-ripened cheese. International Journal of Systematic and Evolutionary Microbiology 51:843-852. DOI: /00207713-51-3-843.

Brennan N.M., Brown R., Goodfellow M., Ward A.C., Beresford T.P., Vancanneyt M., Fox, P.F. and Cogan T.M. 2001. Microbacterium gubbeenense sp. nov., isolated from the surface of a smear-ripened cheese. International Journal of Systematic and Evolutionary Microbiology 51:1969-1976. DOI:

Boutrou R. and Gueguen M. 2005. Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology, 102:1-20. DOI:

Chen M.H. and Ledford R.A. 1972. Proteolytic activity of Geotrichum candidum. Journal of Dairy Science 55:666.

Churchill M.M., Hannon J.A. and Mcsweeney P.L.H. 2003. Proteolysis at the Surface of Tilsit Cheese, Milchwissenschaft, 58(5-6):293-296.

Cogan T.M., Jamet E., Beduhn R., Bora N., Chamba J.-F., Irlinger F., Sebastiani H., Desmasures N., Hohenegger M., Mounier J., Ward A.C., Goodfellow M., Goerges S., Guéguen M., Larpin S., Swings J., Vancanneyt M., Gelsomino R., Rea M.C. and Scherer S., 2014. Biodiversity of the surface microbial consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen cheeses. Microbiology Spectrum 2, CM-0010-2012. DOI:

Corsetti A., Rossi J. and Gobbetti M. 2001. Interactions between yeasts and bacteria in the smear surface-ripened cheeses. International Journal of Food Microbiology 69:1-10. DOI:

Cox J. and Mann M. 2008. Max Quant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology26:1367-1372.DOI:

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N. and Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular and Cellular Proteomic 13:2513-2526. DOI:

CoxJ., Neuhauser N., Michalsk A., Scheltema R. A, Olsen J. V. and Mann M. 2011. Andromeda: A peptide search engine integrated into the MaxQuant environment.Journal of Proteome Research10(4):1794-805.DOI:

Eliskases-Lechner F., and Ginzinger W. 1995. The yeast flora of surface ripened cheese. Milchwissenschaft 50:458-462.

Eliskases-Lechner F., Kossler A., and Ginzinger W. 1997. The incidence and characterization of Geotrichumsp. in cheese. Deutsche Molkerei-Zeitung, Lebensmittelindustrie und Milchwirtschaft 118:56-61.

Exterkate F. A.1995. The lactococcal cell envelope proteinases: Differences, calcium-binding effects and role in cheese ripening. International Dairy Journal 5:995-1018. DOI: (95)00042-9

Exterkate F. A. 2000 Structural changes and interactions involved in the Ca2+-triggered stabilization of the cell-bound cell envelope proteinase in Lactococcus lactis subsp. cremoris SK11. Applied and Environmental Microbiology 66:2021-2028. DOI:

Exterkate F. A., Slangen C. J., and Siezen R. J. 2001. Effect of genetically modified Lactococcus lactis cell-envelope proteinases with altered specificity on the course of casein degradation under cheese conditions. International Dairy Journal 11:363-371. DOI: (01)00065-6.

Fenelon M. A. and Guinee T. P. 2000. Primary proteolysis and textural changes during ripening in Cheddar cheeses manufactured to different fat contents. International Dairy Journal 10:151-158.

Gobbetti M., Lowney S., Smacchi E., Battistotti B., Damiani P. and Fox P.F.1997. Microbiology and biochemistry of Taleggio cheese during ripening. International Dairy Journal 7: 509-517. DOI: (97)00044-7.

Guéguen M., and Lenoir J. 1976. Caractéres du systéme protéolytique de Geotrichum candidum. Lait 557:439-448. DOI:

IDF 1982. Cheese and processed cheese; determination of the total solids content. Standard 4A:1982. Brussels, Belgium: International Dairy Federation.

IDF 1986. Determination of the Nitrogen Content (Kjeldahl Method) and calculation of crude protein content. Standard 20A:1986. Brussels, Belgium: International Dairy Federation.

IIRS 1955. Determination of the percentage of fat in cheese. Irish Standard 69:1955. Institute for Industrial Research and Standards, Dublin.

Irlinger F. and Mounier J. 2009. Microbial interactions in cheese: implications for cheese quality and safety. Current Opinions in Biotechnology 20:142-148. DOI: 10.1016/j.copbio.2009.02.016.

Iya K. K., and Fazier W. C. 1949. The yeast in the surface smear of Brick Cheese. Journal of Dairy Science 32:475.

Kelleher P., Bottacini F., Mahony J., Kilcawley K. N., and van Sinderen D. 2017. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC genomics 18(1):267.DOI:

Kelly C.D. 1939. The microbiological flora on the surface of Limburger cheese. Journal of Dairy Science 20:239-246. DOI: (37)95692-3.

Knoop A. M. and Buchheim W. 1980. Different development of the structure in Harzer, Tilsit and Camembert -cheese during ripening. Milchwissenschaft, 35:482-488.

Kuchroo C.N., and Fox P.F. 1982. Soluble nitrogen in Cheddar cheese: comparison of extraction procedures. Milchwissenschaft, 37:331-335.

Leclercq-Perlat M.-N., A. Oumer J.-L. Bergere H. E. Spinnler and Corrieu G.1999. Growth of Debaryomyces hansenii on a bacterial surface-ripened soft cheese. Journal of Dairy Research 66:271-281. DOI:

Mounier J., Gelsomino R., Georges S., Vancanneyt M., Vandemeulebroecke K., Hoste B., Scherer S., Swings J., Fitzgerald G.F and Cogan T.M. 2005. Surface flora of four smear-ripened cheeses. Applied and Environmental Microbiology 71:6489-6500. DOI:

Place R. B., Hiestand D., Burri S. and Teuber M. 2002. Staphylococcus succinus subsp. casei, subsp. nov., a dominant isolate from surface-ripened semi-hard cheeses. Systematic and Applied Microbiology 25:353-359. DOI:

Place R.B., Hiestand D., Burri S. and Teuber M. 2003. Staphylococcus succinus subsp. casei, subsp. nov., a dominant isolate from Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface-ripened semi-hard cheeses. Systematic and Applied Microbiology 26:30-37. DOI:

Prillinger H., Molnar O., Eliskases-Lechner F. and Lopandic K. 1999. Phenotypic and genotypic identification of yeasts from cheese. Antonie van Leeuwenhoek. 75:267-283. DOI:

Rattray F. P., Fox P. F. and Healy A. 1996. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine ?s1-casein. Applied and Environmental Microbiology 62:501-506.

Rattray F. P., Fox P. F. and Healy A. 1997. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine ?-casein. Applied Journal of Environmental Microbiology 63:2468-2471.

Rattray F.P. and Fox P.F. 1998. Recently identified enzymes of Brevibacterium linens ATCC 9174 a review. Journal of Food Biochemistry, 22:353 -373.

Rea M.C., Görges S., Gelsomino R., Brennan N.M., Mounier J., Vancanneyt M., Scherer S., Swings J. and Cogan T.M., 2007. Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese. Journal of Dairy Science 90:2200-2210. DOI:

Reps A. 1993. Bacterial surface-ripened cheeses. Cheese, Chemistry, Physics and Microbiology. Vol 2. 2nd Ed. P.F. Fox, Ed. Chapman and Hall, London, United Kingdom; Vol. 2, 137-172.

Ritschard J. S., Amato L., Kumar Y., Müller B., Meile L., and Schuppler M. 2018. The role of the surface smear microbiome in the development of defective smear on surface-ripened red-smear cheese. AIMS Microbiology 4(4):622-641. DOI:

Schubert K., Ludwig W., Springer N., Kroppenstedt R.M., Accolas J. P. and Fiedler F.,1996. Two coryneform bacteria isolated from the surface of french Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. International Journal of Systematic Bacteriology 46:81-87. DOI:

Shalabi S. I. and P. F. Fox. 1987. Electrophoretic analysis of cheese: Comparison of methods. Irish Journal of Food Science and Technology 11(2):135-151.

Seiler H. 1986. Identification of cheese-smear coryneform bacteria. Journal of Dairy Research 53:439-449.

Singh T. K., Fox P. F., and Healy A. 1995. Water-soluble peptides in Cheddar cheese: isolation and identification of peptides in the UF retentate of water-soluble fractions. Journal of Dairy Research 62:629-640.

Singh T. K., Fox P. F. and Healy A. 1997. Isolation and identification of further peptides in the diafiltration retentate of the water-soluble fraction of Cheddar cheese. Journal of Dairy Research 64:433-443.

Singh T. K., Fox P. F., Højrup P. and Healy A. 1994. A scheme for the fractionation of cheese nitrogen and identification of principal peptides. International Dairy Journal 4:111-122.

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M., Geiger Y., Mann T. and Cox J. 2016. The Perseus computational platform for comprehensive analysis of proteomics data. Nature Methods 13:731-740. DOI:

Tyanova S., Temu T. and Cox J. 2016a. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocol 11:2301-2319. DOI:

Upadhyay V.K., McSweeney P.L.H., Magboul A.A.A. and Fox P. F. 2004. Proteolysis in cheese during ripening. Cheese: Chemistry, Physics and Microbiology. Edn. 3, Fox P.F., Mcsweeney P.L.H., Cogan T.M. and Guinee T.P. Elsevier London, UK; 391-433.

Valdés-Stauber N., Scherer S. and Seiler H. 1997. Identification of yeasts and coryneform bacteria from the surface microflora of Brick cheese. International Journal of Food Microbiology 34:115-129. DOI: (96)01171-3.

Wolfe B.E., Button J., Santarelli E. and Dutton M. R .J. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158:422-433. DOI:

Wyder M.T. and Puhan Z. 1999. Investigation of the yeastflora in smear ripened cheeses. Milchwissenschaft 54:330-333.

Zarmpoutis I.V., Mcsweeney P.L.H. and Fox P.E 1997. Proteolysis in blue-veined cheeses: an intervarietal study. Irish Journal of Agriculture Food Research 36:219-229.

Zhang G, Ueberheide B.M., Waldemarson S., Myung S., Molloy K., Eriksson J., Chait B.T., Neubert T.A. and Fenyö D. 2010. Protein quantitation using mass spectrometry. Methods Molecular Biology 673:211-222. DOI: