MICROENCAPSULATION OF ELAEAGNUS MOLLIS OIL TO ENHANCE THE OXIDATION STABILITY OF POLYUNSATURATED FATTY ACIDS: THE INTERACTION BETWEEN FATTY ACIDS AND WALL MATERIALS

Main Article Content

J. YU
Z. JINGJING
Z. HONGFEI
Z. BOLIN

Keywords

polyunsaturated fatty acids, storage stability, appropriate ratio, hydrogen bonds

Abstract

Our study deals with the protective effect of gelatin-acacia as a wall material on Elaeagnus mollis oil (EMO), the core material with over 45% polyunsaturated fatty acids. We found that 2.0% of the gelatin-acacia complex was an ideal concentration for facilitating the microencapsulation of EMO. The ideal ratio of EMO/wall materials would be 1:1. As a result, the microencapsulated EMO successfully underwent the spray-drying treatment because of close hydrogen bonding between EMO and the gelatin-acacia complex. Moreover, no spoilage was observed for the heated EMO microcapsules during storage.

Abstract 115 | pdf Downloads 111

References

Anvari, M., Pan, C.H., Yoon, W.B. and Chung D. 2015. Characterization of fish gelatin–gum arabic complex coacervates as influenced by phase separation temperature.Int. J. Biol. Macromol. 79:894-902.

AOAC. 1995. Official Method 965.33. Peroxide value of oils and fats. Official methods of analysis, Oils and Fat. Chapter 41, 9.

Aziz, S., Gill, J., Dutilleul, P., Neufeld, R. and Kermasha, S. 2014. Microencapsulation of krill oil using complex coacervation. J. Microencapsu, 31: 774.

Bu?ra Ocak. 2012. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. J. Environ Manage100:22-28.

Dong, Z.J., Touré, A., Jia, C.S., Zhang X.M. and Xu, S.Y. 2007. Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. J. Microencapsul. 24: 634.

Gomez-Estaca J., Comunian T.A., Montero P., Ferro-Furtado R. and Favaro-Trindade C.S. 2016. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex.Food Hydrocolloid. 61:155-162.

Hcf C., Tonon R.V., Crf, G. and Hubinger, M.D. 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials.J. Food Eng. 115:443-451.

Hongo C., Nagarajan V., Noguchi K., Kamitori S., Okuyama K., Tanaka Y. and Nishino N. 2001. Average crystal structure of (Pro-Pro-Gly) 9 at 1.0[Aring] resolution. Polym J.33:812-818.

Jiravanichanun N., Mizuno K., Bächinger H.P. and Okuyama K. 2006. Threonine in collagen triple-helical structure. Polym J.38:400-403.

KanL., Wang L., Ding Q., Wu Y. and Ouyang J. 2017. Flash extraction and physicochemical characterization of oil from elaeagnus mollis diels seeds. J. Oleo Sci. 66: 345-352.

Laine P., Lampi A.M., Peura M., Kansika, J., Mikkonen K., Willför S., Tenkanen M. and Jouppila K. 2010. Comparison of microencapsulation properties of spruce galactoglucomannans and arabic gum using a model hydrophobic core compound.J. Agr. Food Chem. 58:981-989.

LiuS., Low N.H. and Nickerson, M.T. 2015. Entrapment of flaxseed oil within gelatin-gum arabic capsules. J. Am. Oil. Chem. Soc.87:809-815.

Maji T.K. and Hussain M.R. 2010. Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. J. Appl. Polym. Sci. 111:779-785.

MaurerS., Ghebremedhin M., Zielbauer B.I., Knorr D. and Vilgis T.A. 2016. Microencapsulation of soybean oil by spray drying using oleosomes. J. Phys. D Appl. Phys. 49:054001.

Qv X.Y., Zeng, Z.P. and Jiang J.G. 2011. Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloid. 25:1596-1603.

Rajabi H., Ghorbani M., Jafari S. M., Mahoonak A.S. and Rajabzadeh G. 2015. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum arabic and gelatin as wall materials.Food Hydrocolloid. 51:327-337.

Shamaei S., Seiiedlou S.S., Aghbashlo M., Tsotsas E. Kharaghani A. 2017. Microencapsulation of walnut oil by spray drying: effects of wall material and drying conditions on physicochemical properties of microcapsules. Innov. Food Sci Emerg. 39:101-112.

Teixeira M.I., Andrade L.R., Farina M. and Rocha-Leão M.H.M. 2004. Characterization of short chain fatty acid microcapsules produced by spray drying. Mat. Sci. Eng. C.24:653-658.

Umesha S.S., Monahar B. and Naidu K.A. 2013. Microencapsulation of ?-linolenic acid-rich garden cress seed oil: physical characteristics and oxidative stability. Eur. J. Lipid Sci. Tech.115:1474-1482.

Wang Y., Qin Y., Du Z. and Yan G. 2012. Genetic diversity and differentiation of the endangered tree Elaeagnus mollisDiels (Elaeagnus L.) as revealed by simple sequence repeat (SSR) markers. Biochem. Syst. Ecol. 40:25-33.

Xiao Z., Liu W., Zhu G. and Niu R.Z.A. 2014. Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr J.29:166-172.

Zhang Z.F., 2008. Study on Biological Activities and Element Analysis of Flavonoids in Elaeagnus mollis. Master, Shanxi Normal University.

Zhao Y., Ren, Y., Zhan R., Zhang L., Yu D.Jiang, L. and Elfalleh W. 2018. Preparation of hydrogenated soybean oil of high oleic oil with supported catalysts. Food Biosci.22:91-98.

Zhou D., Pan Y., Ye J., Jia J., Ma J. and Ge F. 2017. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT -Food Sci Technol. 83: 292-297.

Zong Y., Xu Y., Liang X., Keene D.R., Höök A., Gurusiddappa S. and Narayana S.V.L. 2005. A 'collagen hug' model for Staphylococcus aureus CAN binding to collagen. Embo J. 244224-4236.