FREEZE DRYING AND MOISTURE ADSORPTION KINETICS OF KEFIR POWDER

Main Article Content

H. ISLEROGLU

Keywords

adsorption isotherm, compensation theory, freeze drying, Gibbs free energy, kefir powder

Abstract

Freeze drying and moisture adsorption behaviour of kefir powder were investigated by fitting the experimental drying data to ten thin layer drying and sorption isotherm models. Moisture adsorption isotherms of kefir powder were determined at 5-35°C and within the range of 0.11–0.88 water activity. By statistical comparison of the values, Midilli et al. was found to be the best model describing the freeze drying behaviour. The GAB and Oswin equations gave the closest fit to the adsorption data over the tested range of temperatures and water activities. Additionally, adsorption isotherms data were used to determine the thermodynamic properties such as isosteric heat, sorption entropy and Gibbs free energy. The enthalpy entropy compensation was valid for the adsorption process and showed that the process was controlled by the enthalpy. Gibbs free energy was negative at all of the tested temperatures, which indicates that moisture adsorption of kefir powder was a spontaneous process.

Abstract 272 | pdf Downloads 263

References

Acar B., Sadikoglu H. and Doymaz I. 2015. Freeze-Drying Kinetics and Diffusion Modeling Of Saffron (Crocus SativusL.). J. Food Proces. Pres. 39:142.

AdamiecJ., Kaminski W., Markowski A.S. and Strumillo C. 2015. Drying of Biotechnological Products in Handbook of Industrial Drying, 4th edn. (CRC Press, Taylor&Francis Group)

Al-Muhtaseb A.H., McMinn W.A.M. and Magee T.R.A. 2002. Moisture sorption isotherm characteristics of food products: A review. Food Bioproducts Proces.80:118.

Al-Muhtaseb A.H., McMinn W.A.M. and Magee T.R.A. 2004. Water sorption isotherms of starch powders. Part 1:Mathematical description of experimental data. J. Food Eng. 61, 297.

Al-Muhtaseb A.H., McMinn W.A.M. and Magee T.R.A. 2004. Water sorption isotherms of starch powders: Part 2: Thermodynamic characteristics. J. Food Eng. 62 (2):135.

Anonymous. 1990. Official Methods for Analysis, Vol. 2, 15th ed.; AOAC. Arlington, VA.

Antal T. and Kerekes B. 2016. Investigation of Hot Air-And Infrared-Assisted freeze-Drying Of Apple. J. Food Process Pres. 40:257.

Arslan S. 2014. A review: chemical, microbiological and nutritional characteristics of kefir. CyTA- J. Food. 13:1.

Atalar I. and Dervisoglu M. 2015. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT -Food Sci. Technol. 60:751.

Avhad M.R. and Marchetti J.M. 2016. Mathematical modelling of the drying kinetics of Hass avocado seeds. Ind. Crops Prod. 91:76.

Azura-Nieto E. and Beristain-Guevara C.I. 2007. Thermodynamic and kinetic study of water adsorption on whey protein. Rev. Mex. Ing. Quím. 6:359.

Barukcic I., Gracin L., Jambrak A.R. and Božanic R. 2017. Comparison of chemical, rheological and sensory properties of kefir produced by kefir grains and commercial kefir starter. Mljekarstvo. 67 (3):169.

Bast?o?lu A.Z., Koç M. and Kaymak-Ertekin F. 2017. Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Food Measure. 11:1295.

Basu S., Shivhare U.S. and Mujumdar A.S. 2006. Models for sorption isotherms for foods: A review. Dry. Technol. 24:917.

Brunauer S., Emmett P.H. and Teller E. 1938. Adsorption of gases in multimolecular layer. J. Am. Chem. Soc. 60:309. Chen, C.S. 1971. Equilibrium moisture curves for biological materials. Transaction of the ASEA. 14:924.

Chifiriuc M.C., Cioaca A.B. and Lazar V. 2011. In vitro assay of the antimicrobial activity of kefir against bacterial and fungal strains. Anaerobe.17:433.

Corrêa P.C., Oliveira G.H.H. and Santos E.S. 2012. Thermodynamic properties of agricultural products processes. In Physical properties of foods: Novel measurement techniques and applications, ed. by I. Arana, (CRC Press, Boca Raton), p.131-141

Ergün K., Çaliskan G., and Dirim S.N. 2016. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transf. 52:2697.

Farnworth E.R. 2005. Kefir a complex probiotic. Food Sci. Technol. 2:1.

Fasina O.O. 2006. Thermodynamic properties of sweet potato. J. Food Eng. 75:149.

Gabas A.L., Telis V.R.N., Sobral P.J.A. and Telis-RomeroJ. 2007. Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. J. Food Eng. 82:246.

Ghirisan A., Dragan S. and Miclaus V. 2017. Freeze-Drying Kinetics Approach Of Soluble Coffee: Mass Transfer Parameters Estimation. Studia Ubb Chemia. 1:7.

Goyal R.K., Kingsly A.R.P., Manikantan M.R. and Ilyas S.M. 2007. Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer, J. Food Eng. 79 (1):176.

Greenspan L. 1977. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. 81:89-112.

Gronnevik H., Falstad M. and Narvhus J.A. 2011. Microbiological and chemical properties of Norwegian kefir during storage. Int. Dairy J. 21:601.

Halsey G. 1948. Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16:931.

Henderson S.M. 1952. Abasic concept of equilibrium moisture. Agric. Eng. 33:29.

Iglesias H.A and Chirife J. 1976c. Prediction of the effect of temperature on water sorption isotherms of food material. J. Food Technol. 11:109.

Iglesias H.A. and Chirife J. 1978. An empirical equation for fitting water sorption isotherms of fruits and related products. Can. Inst. Food Sci. Technol. J. 11:12.

IzliG. 2017. Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Sci. Technol. 37(1):139.

Izli N., Izli G. and Taskin O. 2017. Drying kinetics, colour, total phenolic content and antioxidant capacity properties of kiwi dried by different methods. Food Measure. 11:64.

Izli N., Izli G. and Taskin O. 2018. Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. CYTA-J. Food. 16 (1):213.

Kaymak-Ertekin F. and Gedik A. 2004. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT -Food Sci. Technol. 37(4):429.

Kaymak-Ertekin F. and Sultanoglu M. 2001. Moisture sorption isotherm characteristics of peppers. J. Food Eng. 47:225.

Koç B., Sakin-Yilmazer M., Balkir P. and Kaymak-Ertekin F. 2010. Spray drying of yoghurt: optimization of process conditions for improving viability and other quality attributes. Dry. Technol. 28:495.

Kumar P. and Mishra H.N. 2004. Yogurt powder. A review of process technology, storage and utilization. Food Bioprod. Process. 82 (2):133.

Kumar P. and Mishra H.N. 2006. Moisture sorption characteristics of mango–soy-fortified yogurt powder. Int. J. Dairy Technol. 59:22.

Labuza T.P. 1984. Moisture Sorption: Practical Aspects of Isotherm Measurement and Use, AACC. St. Paul.

Madamba P.S., Driscoll R.H. and Buckle K. A. 1996. The thin-layer drying characteristics of garlic slices. J. Food Eng. 29 (1):75.

Marques L.G. and Freire J.T. 2005. Analysis of Freeze-Drying of Tropical Fruits. Dry. Technol. 23:2169.

Midilli A., Kucuk H. and Yapar Z. 2002. A new model for single-layer drying. Dry. Technol. 20 (7):1503.

Moreira R., Chenlo F., Torres M.D. and Vallejo N. 2008. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. J. Food Eng. 88:514.

Moreira R., Chenlo F., Vázquez M.J. and Cameán P. 2005. Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K. J. Food Eng. 71:193.

Mulet A., Garcia-Pascual P., Sanjuán N. and Garcia-Reverter J. 2002. Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). J. Food Eng. 53 (1):75.

Munio M.M., Guadix E.M. and Guadix A. 2015. Modeling of Water Sorption Isotherms Characteristics of Spray-Dried Cherimoya (Annona cherimola) Puree. Particl. Sci. Technol. 33:264.

Noshad M., Mohebbi M., Shahidi F. and MortazaviS.A. 2012. Effect of osmosis and ultrasound pretreatment on the moisture adsorption isotherms of quince. Food Bioprod. Process. 90:266.

Oswin C.R. 1946. The kinetics of packing life. III. The isotherm. J. Chem. Ind. 65:419.

Peleg M. 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process. Eng. 16:21.

Rahman S. 1995. Water activity and sorption properties of foods, in Food Properties Handbook ed. By S. Rahman, (CRC Press, Boca Raton, FL), pp. 1–86

Rao M.A. and Rizvi S.S.H. 1995. Engineering Properties of Foods (Marcel Dekker Inc, New York, USA).

Rizvi S.S.H. 1995. Thermodynamic properties of foods in dehydration. In Engineering Properties of Foods; ed.by M. Dekker (New York) pp. 223-309.

Rückold S., Grobecker K.H. and Isengard H.D. 2000. Determination of the contents of water and moisture in milk powder. Fresenius J. Anal. Chem. 368:522.

Sawhney I.K., Sarkar B.C., Patil G.R. and Sharma H.K. 2014. Moisture sorpt?on isotherms and thermodynamic properties of whey protein concentrate powder from buffalo skim milk. J. Food Proces. Pres. 38:1787.

Sharaf-Eldeen Y.I., Blaisdell J.L. and Hamdy M.Y. 1980. A model for earcorn drying, Transactions of the ASAE. 23 (5):1261.

Sharma G.P. and Prasad S. 2004. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 65 (4):609.

Silva E.K., Fernandes R.V.B., Borges S.V., Botrel D.A. and Queiroz F. 2014. Water adsorption in rosemary essential oil microparticles: Kinetics, thermodynamics and storage conditions. J. Food Eng. 140:39.

Sinija V.R. and Mishra H.N. 2008. Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. J. Food Eng. 86:494.

Souza S.J.F., Alves A.I., Vieira E.N.R. Vieira J.A.G., Ramos A.M. and Telis-Romero J. 2015. Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Sci. Technol. 35 (1):157.

Spiess W.E.L. and Wolf W. 1983. The results of the COST 90 project on water activity, in Physical properties of foods ed. By R. Jowitt, F. Escher, B. Hallström, H. Mefert, W. Spiess, G. Vos (Elsevier Applied Science, London), pp. 65–91

Stencl J. 2004. Modelling the water sorption isotherms of yoghurt powder spray. Math. Comput. Simul. 65:157.

Tadapanenia R.K., Yanga R., Carterb B. and TangaJ. 2017. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Res. Int. 102:203.

Tamime A.Y., Wszolek M., Božanic R. and Özer B. 2011. Popular ovine and caprine fermented milks. Small Ruminant Res. 101:2.

Telis V.R.N., GabasA.L., Menegalli F.C. and Telis-Romero J. 2000. Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta. 343:49.

Tolaba M.P., Peltzer M., Enriquez N. and Pollio M.L. 2004. Grain sorption equilibria of quinoa grains. J. Food Eng. 61:365.

Van den Berg C. 1985. Development of B.E.T. like models for sorption of water of foods; theory and relevance, in Properties of water in foods, ed. by D. Simatos, J.L. Multon (Martinus Nijhoft Publishers, Dordrecht), pp. 119–135.

Verma L.R., Bucklin R.A., Endan J.B. and Wratten F.T. 1985. Effects of drying air parameters on rice drying models, Transactions of the ASAE. 28 (1):296.

Wang C.Y. and Singh R.P. 1978. A single layer drying equation for rough rice, ASAE. 78:3001.

Wang X., Shi Q., Zhao Y., Wang X. and Zheng Y. 2013. Moisture Adsorption Isotherms And Heat Of Sorption Of Agaricus Bisporus. J. Food Process. Preserv. 37:299.

Wang Z., Sun J., Liao X., Chen F., Zhao G., Wu J. and Hu X. 2007. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40 (1):39.

Yazdani M., Sazandehchi P., Azizi M. and Ghobadi P. 2006. Moisture sorption isotherms and isosteric heat for pistachio. Eur. Food Res. Technol. 223:577.

Yu H. and Li Y. 2012. Sorption isotherms and thermodynamic properties of freeze-dried colostral whey powders with different additives. Int. J. Food Sci. Technol. 47:613.

Zhu A. and Xinqi S. 2014. The model and mass transfer characteristics of convection drying of peach slices. Int. J. Heat Mass Transfer. 72:345.